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PREFACE

In support of the Office of Rail and Construction Technology of the Urban

Mass Transportation Administration (UMTA)
,

the Transportation Systems Center

is conducting analytical and experimental studies to relate transit truck de-

sign characteristics to wheel rail forces and wheel rail wear ratio. The

results of these studies are expected to provide rail transit systems with

options for reducing the wheel-rail wear rates while maintaining or improving

equipment performance.

In the past decade, there have been significant efforts toward developing

steerable truck configurations employing direct connections between axles and

supplemental linkages connecting the axles to the carbody. These new configur-

ations aid in steering while maintaining the speed capability of the truck

design. Under contracts DOT-TSC-1739 and DOT-TSC-1740 with the Budd Company

and with the Urban Transportation Development Corporation, design studies have

been conducted for the retrofit of existing trucks to linkage-steered config-

urat ions

.

Under an earlier contract with the U.S. Department of Transportation, Office

of University Research (DOT-03-70052), the Department of Mechanical Engineering

of Massachusetts Institute of Technology had conducted studies of the performance

limits of conventional and self-steering trucks for intercity passenger applica-

tion.

This study used curve negotiation criteria in which both flange contact and

wheel slip were prevented. Such a study is unrealistic for the sharp curves

typical of transit application.

The study described in this document extends the previous analyses to in-

clude regions of significant flange contact for sharper curve radii. Also

iii



considered is the performance achievable with forced steering mechanizations

employing truck to carbody linkages.

The work was performed under contract to the Transportation Systems Center

in support of the Urban Mass Transportation Administration. The authors would

like to thank Dr. Herbert Weinstock for many productive discussions on the work

in progress and his careful review and comments on this report.
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EXECUTIVE SUMMARY

Analytical studies are presented which compare the curving and stability

performance of conventional rail transit trucks with recently introduced innova-

tive trucks such as self- steering (cross bracing between wheelsets) and forced

steering (linkages between the carbody and wheelsets) radial trucks. Truck

curving performance is measured by calculating the work performed by the wheel/

rail friction forces in the contact patches per unit distance traveled. The

contact area work is used as an indicator of the wheel and rail wear rate as

well as a measure of the additional power required to pull the truck through the

curve. Truck speed capability is measured by calculating the maximum forward

speed the vehicle can operate at before undamped lateral oscillation or hunting

occurs. This maximum speed is called the critical speed in this report; in

general, the operating speed of the vehicle is chosen to be a comfortable safety

factor below this speed.

Studies have been conducted to determine the influence of truck suspension

parameters and wheel profile on the truck speed and curving performance. These

studies are summarized in Tables 5.3 and 5.4 in the report.

For conventional trucks the two dominant design parameters influencing

stability and curving performance are truck primary longitudinal suspension

stiffness and wheel profile. As the longitudinal stiffness is increased, the

work index and the critical speed increase until an upper value of stiffness

is reached where the critical speed decreases with further increases in

stiffness. For typical stiffness ranges of 10^ lb/ft to 2 x 10^ lb/ft per

axlebox, critical speeds of 110 mph to 210 mph were computed for the base-

line transit vehicle parameters using a standard new AAR wheel profile

with a 1/20 tread conicity. The work index for this stiffness range for the

vehicle negotiating a 10° curve was 85 ft-lb/ft to 155 ft-lb/ft for the
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flanging wheel which is generally the lead axle, high rail wheel. For a given

speed the additional power required to overcome the resistance per wheel can

be computed from the work index. For example, for a forward speed of 50 ft/sec

(34 mph) a work index of 155 ft-lb/ft corresponds to 14 horsepower. Typically

the flanging wheel has the highest work index by a substantial margin. For the

case of the flanging wheel having 155 ft-lb/ft on a 10° curve the work of the

other three wheels of the truck increases the total work to 250 ft-lb/ft. The

numerical results indicate that truck designs with reduced primary suspension

longitudinal stiffnesses have significantly reduced work generated during

curving; however, the lower critical speeds associated with this reduction in

longitudinal stiffness must be acceptable.

The performance of a single point contact Heumann profile wheel with a

0.2 conicity on the conventional truck has been studied. To achieve the same

critical speed as the 1/20 AAR wheel design a higher longitudinal primary

suspension stiffness is required for the 0.2 conicity wheel; for example, to

achieve a critical speed of 125 mph the Heumann wheel profile requires a

stiffness six times that of the lower 1/20 conicity wheel; however at this

critical speed the Heumann wheel profile truck design requires 22% less work

per unit distance to negotiate a 10° curve than the truck designed for 1/20

conicity wheels. In the range of designs corresponding to critical speeds of

90 to 130 mph, the Heumann wheel profile designs generally have reduced work

generated in curving in comparison to the 1/20 conicity wheel profile designs

for the same critical speed. It is noted that in the range of practical

longitudinal stiffnesses considered, the 0.2 conicity wheel was found to have

a maximum design critical speed cf 130 mph and if higher critical speeds are

desired reduced conicity wheels are required.
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For self -steering radial trucks with cross bracing between the wheelsets

the interaxle bending and shear stiffness as well as the primary suspension

longitudinal stiffness and wheel profile are important design parameters. The

best stability/curving performance tradeoff was obtained for designs with a

low interaxle bending, high interaxle shear and intermediate primary longitudinal

stiffness. For self-steered radial trucks designed with identical critical

speeds of 100 mph ,
the work required in curving is similar for low (0.05) and

high (0.2) conicity wheels. For designs with identical critical speeds of

130 mph, the truck designs with a higher conicity wheel requires 20% less work

to negotiate a 10° curve than the 0.05 conicity design. The self-steering

radial truck designs for both low and high conicity wheels require approximately

12% less work to negotiate a 10° curve than an equivalent 130 mph critical

speed conventional truck design for both low and high conicity wheels.

Techniques have been developed and implemented to assess the performance

of a wide variety of forced steering truck designs employing linkages between

the carbody and truck/ wheelset elements. One of the configurations which is

appropriate for transit systems and contains the essential design characteristics

in terms of stiffnesses and steering gains which are necessary to illustrate

forced steering truck performance characteristics has been studied in detail.

Thus, while the study results are in general indicative of forced steering

truck performance characteristics, specific configurations may have particular

curving or stability characteristics which differ from those of the conf isuration

studied. The geometric gain of the forced- steering truck configuration studied

has been selected to yield a design which kinematically tracks the same rolling

line (in the absence of flanging) for any constant radius curve. For this design

principal stab ility /curving tradeoff design parameters include truck primary

suspension longitudinal stiffness, steering link stiffness and wheel profile.
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The studies indicate that a combination of low values of primary longitudinal

3 4
stiffness ranging from 10 lb/ft to 7 x 10 lb/ft coupled with high values

of steering link stiffness above 10 ^ lb/ft provide critical speeds in the

range of 90 mph to 130 mph. The practical lower limit on primary suspension

stiffness is determined by a combination of factors involving the details of

truck propulsion and braking system while the upper limit on steering link

stiffness is established by link geometry and material selection.

For forced-steered truck designs with low stiffness the steering linkages

can exert a destabilizing yaw moment on the front truck. In extreme design

cases, with very low stiffness and conicities, kinematic instability can occur

resulting in a critical speed near zero. Studies have shown that for primary

lateral stiffnesses greater than 10^ lb/ft, secondary yaw stiffnesses greater

5 *
than 10 ft-lb/rad

,
and for conicities greater than 0.01 that kinematic

instabilities will not occur. This range of parameters corresponds to the

typical designs considered in this study.

Analytical data comparing the work required to negotiate a 10° curve for

designs with a 130 mph critical speed show that the lower primary stiffness

3
(10 lb/ft) designs require approximately 50% of the work per unit distance

4
as the higher primary stiffness (7 x 10 lb/ft) designs and show that designs

with 0.2 conicity Heumann wheels require approximately 50% of the work per

unit distance as the 1/20 conicity wheel truck designs.

Work required during curving for forced steering trucks is significantly

lower than for conventional and self -steering radial trucks designed with the

same critical speed. For designs using 1/20 conicity wheels with a critical

speed of 130 mph, the work required per unit distance to negotiate a 10°

curve for a conventional truck design is reduced to 89% for an equivalent

k
Ref. [27] shows that secondary yaw stiffness is primarily important in the

extremely low (
< 0 .01) conicity case.
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self steering radial truck, to 58% for an equivalent forced steering truck

44

design with a primary stiffness of 7 x 10 Ib/ft and to 24% for a forced

3
steering design with a primary stiffness of 10 lb/ft. For higher conicity

0.2 Heumann wheel profile designs with 130 mph critical speeds, the forced

steering trucks require respectively 8% for the high and 3% for the low

primary stiffness designs of the work required to negotiate a 10° curve as the

equivalent conventional truck. The forced-steering truck designs have the

most significant improvements in performance with the higher conicity Heumann

wheels and the lower values of primary longitudinal stiffness. The forced

steering trucks have the potential to effectively utilize the higher conicity

wheel for designs with critical speeds in the range of 90 to 130 mph. If

higher critical speeds are desired, then lower conicity wheels (less than 0.2)

are required.

A summary comparison of the power required to negotiate a curve for the

prototype truck designs illustrates the potential performance improvement of

advanced designs. The power associated with negotiation of a 10° curve at

50 ft/sec (34 mph) is summarized in the following table for conventional,

self-steered radial, and the two forced radial truck designs with new wheels.

The truck suspensions are designed for identical critical speeds of 120 mph.

The table illustrates the potential advantages of employing forced-steering

to reduce wheel/rail wear and fuel consumption in terms of the dissipated power

in the wheel/rail contact patches.

The significant potential for reduction in wheel wear during curving

offered by forced-steering truck designs must be assessed in terms of the

increased complexity associated with the steering linkages and the practicality

of maintaining the high relative stiffness of the forced -steering links. The
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capability to accommodate braking and propulsion forces with low primary

suspension longitudinal stiffnesses must also be provided. For a specific

transit authority, the selection of an appropriate truck design depends upon

the number and severity of curves which influence the importance of wheel

wear, and upon the desired critical speed which is related to maximum

operating speed.
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Conventional
Design

Self-Steered
Radial
Design

Forced-Steered Radial

Moderate
Primary
Stiffness

Soft

Primary
Stiffness

Front
Truck
Power (HP)

10.7 9.4 7.2 4.1

Rear
Truck
Power (HP)

10.7 7.6 5.2 2.3

Total
Vehicle
Power (HP)

21.4 17.0 12.4 6.4

FIGURE 1. COMPARISON OF POWER REQUIREMENTS OF BASELINE TRUCK DESIGNS
WITH NEW WHEELS NEGOTIATING 10° CURVES AT 50 FT/SEC (34 mph)
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CHAPTER 1

INTRODUCTION

1 . 1 Background

The service provided in an urban rail transportation system and the

associated operating costs are strongly influenced by the state of the

rolling stock and the fixed track structure. Maintenance of rolling stock

and the track structure are essential to good service and control of operating

costs. Components associated with rolling stock including wheels, axles,

suspension elements and the carbody plus power and braking equipment suspended

from the car as well as rails, switching gear, ties and ballast sustain wear

and experience forces directly related to the wheel/rail interaction forces.

The control and limitation of these forces can have a significant impact upon

urban rail transit system maintenance requirements. These forces are

associated directly with vehicle stability or hunting, vehicle curve negotiation

capability and vehicle vertical and lateral suspension capability to accomodate

track irregularities.

In the last decade an increasing interest in developing vehicles which

control these interaction forces to reduce wheel and rail wear and vehicle

and track deterioration has developed and led to proposals for:

(1) Conventional suspension trucks employing rubber or mechanical
components between the axle and truck frame which have reduced

stiffness

.

(2) Self steering radial trucks which employ direct links between

truck axles to aid in aligning the axles radially in curves.

(3) Forced steering trucks which employ direct links between
carbody-truck-axle elements to force the axles into radial

alignment on curves.
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These developments have been motivated primarily by the desire to reduce

wheel and rail wear associated with curve negotiation while maintaining ade-

quate dynamic stability to avoid hunting and adequate suspension capability

to accomodate forces developed due to rail irregularities.

The evaluation of various types of conventional, self steering radial

and forced steering trucks represents a tradeoff between a potential for

performance improvement and increased truck complexity. The selection of

an appropriate type of truck for a specific urban system depends strongly on

the system route characteristics—particularly, the prevalence and distribution

of small radius curves. For example in systems with few small radius curves

conventional truck suspensions may provide a good compromise between performance

and truck design complexity, while for older systems with many small radius

curves, self -steering or forced-steering trucks may prove to provide the best

overall performance. To facilitate the evaluation of truck design by urban

rail operating authorities, analytical evaluation methods, design data and

field test data are required. This study is directed to providing analytical

performance data and evaluation methods for conventional and advanced urban

rail truck designs.

1 . 2 Study Objectives and Scope

A principal objective of this study is to develop performance data for

evaluating the stability and curving performance of conventional, self- steering

radial and forced steering trucks designed for urban rail systems. The

analytical basis for the study has been provided by developing a generic truck

model which directly reduces to conventional, self-steering radial and forced

steering truck designs. Thus, a consistent and common basis is provided for

evaluation of the various truck designs.
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The model has been incorporated into a linear stability program which

allows computation of the truck critical speed at which sustained hunting

occurs and computation of the damping ratios associated with truck modes

of oscillation.

The model has also been incorporated into a nonlinear steady-state

curving program which computes wheelset, truck and carbody angles of

attack and wheel/rail as well as suspension forces for negotiation of a

constant radius curve at constant speed with a given superelevation. The

effects of multiple point wheel/'rail contact which occur in flanging condi-

tions for certain wheel/rail geometries are included directly in the

computations. An indication of wheel/rail wear has been computed based upon

the work performed at the wheel/rail interface.

While the forces predicted with the curving analysis have "hot 'been

directly compared with experimental data, the basic trends predicted by the

model are consistent with the limited experimental data available in the

literature

.

The influence of truck primary suspension longitudinal stiffness, wheel

* *
profile and curve radius reported for tests conducted at WMATA [1, 2] on

conventional trucks correspond directly with the effects predicted in this

study. Specifically, the observations from the WMATA tests that lateral

curving forces are reduced as conventional truck primary longitudinal stiffness

is reduced, and as single point contact wheel profiles are employed correspond

directly with the results described in detail ~in this study.

An extensive parameter study has been conducted to determine the influence

of suspension and wheel profile design parameters on stability and curving

performance of conventional, self-steering radial and forced-steering truck

A
Washington Metropolitan Area Transit Authority.

A*
Bracketed number indicates reference list at the end of this report.
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designs. These performance studies have provided tradeoff data necessary to

identify truck designs for a given critical speed which result in reduced wear

for a given radius curve.

As a part of the study a preliminary evaluation has been performed to

determine the influence of radial and lateral misalignment in truck lead and

trailing axles on curving forces and resultant wear. Axle misalignment, which

may result from construction practice or as the truck is operated, may lead to

significant increases in work required to negotiate a section of curved or

tangent track.

This study has focused on assessment of the linear critical speed and

the steady-state curving wear index. These are considered to be prime

performance indicators for urban trucks and provide meaningful design

information. Additional evaluations of curve entry and exit capability, of

dynamic behavior after the onset of hunting, and of the capability to

accommodate track irregularities are necessary in a more complete evaluation

of truck performance. The development of a nonlinear, dynamic curving model

is planned as a subsequent task to the research reported in this document to

address these issues.
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CHAPTER 2

STUDY METHODOLOGY

This chapter describes the performance criteria and the computational

models used to investigate the dynamic performance of conventional and

innovative transit trucks.

2 . 1 Performance Criteri a

A primary motivation for considering innovative self and forced steered

radial trucks is the potential for reduced wheel/rail wear and forces.

Analytic studies [3] have indicated that reduced wear is the result of a more

radial orientation of the axles during curve negotiation through self or

forced steering. In general, improved curving performance is achieved at the

expense of decreased lateral stability. This report establishes the

relationship between curve negotiation capability and maximum operating speed

cap ability.

2.1.1 Lateral Stability

Analytical and experimental studies have shown that rail vehicles

have a tendency to "hunt" above a speed called the "critical speed". This

instability is in general a coupled lateral and yaw motion involving the

wheelsets, truck frames and Dossibly the carbody. Once the onset of hunting

begins, nonlinearities such as creep force saturation and flange contact

generally limit the amplitude of the oscillation.

In this report, the linear critical speed is selected as the stability

performance index. This speed is calculated by computing the eigenvalues of

a linear model as a function of the vehicle speed. Since wheel /rail creep

forces decrease with increasing speed (for small creepages) as speed increases

a limiting speed is reached where one of the modes of the vehicle vibration
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attains zero damping. The speed at which this occurs is called the

linear critical speed. Vehicle designs should achieve a critical speed

significantly greater than the vehicle operating speed. While the critical

speed serves as a good "single number" indicator of vehicle stability, the

performance of a vehicle near, or above, the critical speed is of interest

and should be evaluated using a nonlinear vehicle model to assess wheel climb

in the region near the critical speed. This type of evaluation for prototype

vehicles considered in this study is recommended as a future task.

2.1.2 Curve Negotiation

Several performance indices have been developed to represent the

ability of a rail vehicle to negotiate a curve. A number of simultaneous

objectives can be identified, such as perfect steering, prevention of derail-

ment, minimum wheel/rail forces, and minimum wheel/rail wear.

Optimal curve negotiation, or perfect steering, is achieved if each

wheelset in a vehicle adopts a radial position and displaces laterally so

that it rolls without slip around the curve. As such, the wheelset lateral

excursion and the wheelset angle of attack or radial misalignment are natural

performance indices. The lateral excursion is usually measured from the track

centerline or from the pure rolling line. The wheelset angle of attack is

the yaw angle of the wheelset with respect to radial alignment. In this

report, y^ denotes the wheelset lateral excursion with respect to the track

centerline and \}j represents the wheelset angle of attack. These displacements
w

are defined in Figure 2.1. An undesirable situation exists when these indices

reach large magnitudes.

The derailing tendencies of a vehicle are associated with the ratio of

lateral flange force to vertical wheel load. When this ratio exceeds a
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PLAN VIEW

a) Angle of Attack

PLAN VIEW
V

v M-i
w I

b) Lateral Wheelset Excursion

Figure 2.1 Definition of Angle of Attack and Lateral

Wheelset Excursion
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critical value, a situation conducive to a flange-climbing type derailment

occurs [4 , 5 ]

.

Several wear indices have been proposed to predict wear rates at the

wheel/rail interface. Due to the complex nature of modeling wear, these

indices are intended to indicate relative levels of wear for use in performance

comparisons, rather than to attempt accurate predictions of actual wear

levels. A list of proposed wear indices appears in Table 2.1. The wheelset

angle of attack, 'p^, the creepages (or normalized rates of slippage), and

the lateral flange force (for a flanging wheel), F^, are related to the wear

rate [6, 7]. The effect of increased ip , E, . , and/or F is to increase wear
w i f

at the wheel/rail contact zone.

Heumann proposed using the product of flange force and angle of attack,

F lb as a wear index [3]. This flange wear index as well as Marcotte's two-
t w

point contact flange wear index [3] are related to the energy dissipated

through Coulomb friction between the wheel flange and the rail. As a measure

of wheel tread and top of rail head wear, Doyle introduced a tread wear index,

defined as the product of the vertical wheel load and the resultant total

creepage
,
V £ [8]

.

1 K

A wear index designed to be a more complete measure of the work expended

at the wheel/rail contact interface has been recommended by British Rail [9].

Their index is the work done in the contact patch, defined as the dot product

of the resultant creep force and resultant creep vectors. When summed over

all contact patches, this index represents the additional work per unit distance

along the track required to pull the vehicle through the curve in steady-state

conditions. This index has units of work per distance, or force.

No comprehensive verification of the proposed wear indices has been

conducted. Limited tests by British Rail and I.I.T. have shown potentially
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k
Table 2.1 Proposed Wear Indices

WEAR INDEX UNITS

ijj Angle of Attack (rad)
w

Creepage ( - )

F^ Flange Force (lb)

F.’l Flange Wear Index (lb)
f w

V
2 , 2

(A /rT _) +(i tano_ ) Two-point Flange Wear Index
z Li w Lr

(lb)

V.£ Tread Wear Index (lb)
1 R

W =F • £ Contact Patch Work (ft-lb/ft)
1 —c —

W
1 2

W. = r— Contact Patch Work/Area (lb/ft )
2 ira b

e e

Variables in Table 2.1 are defined in the nomenclature.

SOURCE

[6, 7]

[3]

[3]

[8]

[9]

[ 10 ]
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useful trends [10, 11]. Dry wear laboratory tests by British Rail [12] have

suggested that the wear rate can be expressed in terms of creep force,

creepage, and Hertzian contact area. Wide-scale experimental validation

of wear models needs to be undertaken to identify which indices can be related

directly with wear.

In this report, the forces and creepages at the wheel/rail interface are

computed so that most of the indices listed in Table 2.1 can be predicted.

Typically, flange contact occurs at the leading outer wheel as a vehicle

negotiates a curve. Both wheel and track deterioration are due to the

significant wear which occurs at the flanging wheel. In particular, it is

the leading outer wheel which is responsible for the vast majority of the

wear that takes place on the gage face of the high rail and on the wheel

flange [13]. In the curving studies, the contact patch work at the flanging

wheel (W ) is used as the curve negotiation performance index.

2 . 2 Truck Configuration s

This section describes the conventional and innovative truck configura-

tions whose performance is investigated. All of the physical configurations

discussed in Section 2.2.1 through 2.2.3 represent special cases

of the g eneric model presented in Section 2.2.4.

2.2.1 Conventional Truck

A conventional truck as illustrated in Figure 2.2 has a primary

suspension between the axle and truck frame. The primary suspension is

typically made up of coiled springs, rubber chevrons or rubber bushings between

the bearing adapter and the truck frame. In Figure 2.2 k is the primary

longitudinal stiffness, k is the primary lateral stiffness, 2d is the
PY P

distance between the longitudinal springs and 2b is the truck wheelbase.
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2.2.2 _Se lf-Steering Radial Truck

A self-steering radial truck is a conventional truck with an

additional direct connection between the two wheelsets by means of passive

springs or structural members in shear and bending. A schematic representation

of a self steering truck is shown in Figure 2.3. Figure 2.4 illustrates two

physical implementations; a cross braced truck is shown in Figure 2.4a and a

steering arm truck in Figure 2.4b.

A self steering truck has two additional stiffness parameters which

connect the two wheelsets directly as shown in Figure 2.3. These are defined

as the direct interaxle bending stiffness, an<^ t ^ie direct interaxle shear

stiffness, k The stiffnesses k,„ and k . are sufficient to model any
s2 b2 s2

direct elastic connection between the two wheelsets. Most often this connec-

tion takes the form of steering arms [14], cross braces [15], or similar link-

ages. The term self-steering radial truck describes the steering action

produced by direct i nterwheelset connections when the stiffness k^
?

is low,

i.e., a yaw motion of one wheelset causes the other wheelset to yaw in the

opposite direction tending to cause the wheelsets to align radially in a

curve

.

The basic concept of the radial truck is to directly interconnect the

wheelsets by means of steering arms with transverse (shear) and bending

stiffnesses at their junction. The shear spring can increase the total shear

stiffness of the self- steering truck above the value achievable by a

conventional truck, thus providing the possibility for better stability and/or

curving performance.

Reference [16] points out that the self- steering radial design has two

essential differences from the conventional design: 1) forces are transmitted
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directly between the wheelsets, and 2) the total truck shear stiffness is

not limited as it is in the conventional design. The first property allows

the truck frame to be dynamically decoupled from the hunting wheelsets [16].

This results in an increase in critical speed for equivalent truck shear and

bending stiffnesses. The second property allows the truck to achieve reduced

lateral flange forces and angle-of-attack on curves after flanging has

occurred

.

The dynamics of a flexible truck are strongly affected by the inter-

wheelset forces either through the truck frame as in the case of the conven-

tional truck or through the interconnection elements as in the case of the

self steering radial truck. It is convenient to use a generalized set of

stiffnesses suggested by Wickens [17]. These are the total truck static

shear and bending stiffness, defined in Figure 2.5 as:

Sh ear Stif fness

:

I

lateral force on leading wheelset due to lateral displacement
!

of trail ing wheelset __
j

lateral displacement of trailing wheelset

Aip = 0

Bending Stiffness :

yaw moment on leading wheelset due to yaw displacement
of trailing wheelset

yaw displacement of trailing wheelset

Ay = 0

For a free truck (not connected to a carbody) with two wheelsets, the



k
s

_F_

Ay
k
b

JL
A ip

Shear Stiffness Bending Stiffness

Figure 2.5 Shear and Bending Stiffness Definitions
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Conventional Truck:

k, = d" k
b p px ( 2 - 1 )

d“ k k
p px py

2 2
d k + b k
P px py

( 2 - 2 )

Self-Steering Radial Truck :

^ d
p

k
px

+ ^2 (2-3)

d
2

k

+ k
,2 , ,

, 2
+

s2
d k + b k
P px py

(2-4)

These stiffnesses are useful in identifying the design region of different

types of trucks in the k
g

- k^ plane. Equations (2-1) and (2-2) imply that
k
bconventional trucks have to satisfy the relation k < — in the limit as

s
b
2

primary lateral stiffness is increased to infinity. With this limitation

conventional truck designs have to lie below the line k = — on the
3

b

k^ - k^ plane, shown in Figure 2.6. The self-steering designs can be anywhere

in the k
g

- k^ plane by virtue of the interaxle bending and shear stiffnesses.

One drawback of the k
g

- k^ plane is that a particular design point in

the plane can be obtained with different combinations of primary and inter-

axle stiffnesses yielding different stability characteristics. The stability

properties are not unique due to differences in the distribution of truck

frame mass (i.e., truck frame inertia) which affects the kinematic modes of

the truck. Since the location of the truck frame vibrational natural

frequencies with respect to the truck kinematic frequency determines the
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Figure 2.6 Design Region for Conventional and Radial
Trucks in the Truck Shear vs . Truck Bending
Stiffness Plane.
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stability behavior [16], the designation does not uniquely define the

stability characteristics of a truck .

2.2.3 Forced- Steer ing Radial Truck

A "forced-steering truck" utilizes linkages between

the carbody and the truck frame to force the axles into near radial

alignment when traversing curves. The essential motivation behind forced

steering is to make use of the relative truck/carbody orientation that develops

as a vehicle negotiates a curve. In particular, the steady-state yaw angle

that develops between the carbody and the truck is related to the curve radius,

and linkages between the carbody and the wheelsets can be used to force the

wheelsets into a more radial alignment. Similarly the lateral displacement

between the carbcdv and truck is related to cant deficiency, and linkages

can be designed to produce forces on the wheelsets as a function of the cant

deficiency. Thus what distinguishes a forced-steering truck from the

conventional and self-steering radial trucks is the presence of forces on the

axles which are a function of the relative yaw and lateral displacement

between the carbody and truck.

Several forced-steering truck configurations have been proposed with

different linkage arrangements. The schematics of three configurations that

have forced-steering action are shown in Figure 2.7. In this study they are

designated the S, L and U trucks because configurationally they are similar

k
to the Scales [18], List [14] and UTDC [19] designs, respectively.

The bending and shear stiffnesses due to forced-steering linkages are

equivalent to "effective" truck interaxle bending and shear stiffnesses.

Urban Transportation Development Corporation Ltd., Ontario, Canada
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AF = k _ A

v

s2

respectively. Typically, the L type truck has a high value of effective

interaxle shear stiffness while the U type truck has zero interaxle shear

stiffness. The S truck has properties similar to the three piece freight

truck because of the high interaxle bending stiffness but relatively low

interaxle shear stiffness. Expressions for the steering gain and effective

interaxle bending stiffness in terms of linkage stiffness for each prototype

are shown in Figure 2.7 with detailed derivations included in Appendix A.

The actuation of the forced-steering linkages can be represented as a

geometric offset in series with a linkage bending and/or shear stiffness. The

geometric offsets Ay and Alp as well as the linkage stiffnesses are shown

schematically in Figure 2.8. The forced-steering forces and moments are:

(2-5)

Am = k^
2

Aip (2-6)

The geometric offsets Ay and Ai[i are controlled by the linkage design

and can differ in alternative truck designs. In general, though, they are

related to the relative lateral and yaw displacements between the truck and

carbody
, i. e. ,

(2-7)

( 2 - 8 )

The plus and minus sign in equation (2-8) indicates that a counter-clockwise

*
moment acts on the front truck and a clockwise moment acts on the rear truck.

It has been shown in [20] that Af can be utilized to control cant deficiency

loads while Am can be utilized to compensate for track curvature effects.

Thus H is called the cant deficiency steering gain and G is called the

curvature steering gain.

Av = 2H(y -y )
1 c

Aw = ±2G(ip
T
~\p

c
)

These directions are shown in Figure 4.10 for secondary yaw moment.
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2a

2d

Figure 2.8 Forced-Steering Schematic



The curvature steering gain G and cant deficiency steering gain H in

the steering lax^s are kinematically related to the physical dimensions of the

steering linkages, while the interaxle bending stiffness k^ is related to

the stiffness of the linkages. Figure 2.9 illustrates a possible forced

steering configuration that utilizes a cant deficiency steering law.

The curving performance of a forced-steered truck is a function of the

steering gain, G. The numerical value of the gain (and hence the linkage

dimensions) can be designed such that kinematically (i.e., with the assumption

of rigid steering linkages and no flange forces) the wheelsets track the

*
pure rolling line, the track centerline or any line parallel to the track

centerline. Theoretically, the gain which makes the wheelsets track the pure

rolling line - the pure rolling line gain G
^

- provides perfect radial

(i.e., neutral) steering of the wheelsets, whereas the gain to track the

centerline - the centerline gain G
^

- results in oversteering.

The steering gain which results in both wheelsets tracking the pure

A A
rolling line is derived in [21] to be:

7

pr £
(2-9)

where l is half the distance between truck centers. The above kinematic
s

result assumes no flange forces, balanced running (no cant deficiency), and

small secondary yaw and primary longitudinal stiffnesses. With the same

assumptions plus the assumption of stiff interaxle shear stiffness, the

steering gain which causes both wheelsets to track the centerline is also

&
The lateral displacement that produces pure kinematic rolling of a single

wheelset

.

A A
The derivation is repeated in Appendix B.
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Figure 2.9 Schematic Diagram of a Forced-Steering

Truck Model with Cant Deficiency Steering

Action
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derived in [21] to be:

c£

,
f ,o 2

—— ( x + 3-3- -a—

)

£ f„ k 2 ’

s 11 b

( 2
- 10 )

and the cant deficiency gain for equal wheelset excursion is:

b k

H = 3JL
2f ( 2

- 11 )

11

In general, the pure rolling line gain is appropriate before flange

contact occurs since it correctly aligns the wheelsets radially. However,

when flange contact occurs the assumptions implicit in the derivation of the

pure rolling line gain are not satisfied and as a result G
^

maY not align

the wheelsets appropriately. Other gains may have relative advantages. The

pure rolling line gain is typically used in practice in prototype

vehicles [24]

.

2.2.4 Generic Truck Model

A generic truck model that represents the different forced-

steering truck prototypes as well as the conventional and self- steering

radial trucks is shoxm in Figure 2.10. The effect of the linkages between

the carbody, the truck and the wheelsets is to generate the geometric offsets

Ay
x

> and according to the following steering laws:

= &ip
2

^ + ^9
+2G

1
[

2
~ - ±2G 2

[
'

yry
2

2b

y
i
+y

2
- fc 1 +2G [ -y ]

yry
2

±2G 4 ^ c
^±2G

5
f'

2
"

^T^-
2G

6^ 2b
* V ( 2 - 12 )

f and fpp are the longitudinal and lateral creep coefficients, respectively.
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Figure 2.10 Generic Forced-Steering Truck Model
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Ay - A;*
2

= 2H
I [

- y
c

l
+ 2H

2
fy
T

- y
c

]
+ 2^- (2-13)

y
i+y 2

2

y
l
+y

2

where the G’s and H's are the steering gains.

y^, y ?
are the lateral displacements of the leading and

trailing wheelsets of the truck, respectively.

ip
9

are the yaw angles of the leading and trailing

wheelsets, respectively.

The steering laws are relatively general. They represent a linear

combination of the differences in yaw displacement between the wheelset pair,

the truck and the carbody, and the differences in the lateral displacement

between the wheelset pair and the truck to sense track curvature and

activate Aii and . Similarly, a linear combination of the differences in

the lateral displacement between the wheelset pair, the truck and the carbody

is used to sense cant deficiency and actuate Ay^ and Ay
?

.

The term forced-steering usually implies direct carbody connections to

the wheelsets to steer the wheelsets into radial alignment. For the sake of

generality and to represent physically realizable trucks, terms that

represent wheelset-truck interconnections have been included in the steering

laws. These are the terms with the G , G and G gains in equation (2-12),
j j n

and the term with the gain in equation (2-13) . For most practical

parameter values, however,, the contributions of these terms to the geometric

offset Alp or Ay are negligible as shown below:

• stiff k implies y_
py ' T

Vy
2

y, +y,
2G

3
(
“
hr
^

y +yJ 1 j o

2h
3

(—

-

2

--

- v ) is negligible

- y^) is negligible

stiff k implies
px T

1+1 1*^2
2G (-

5 2

-
’j^) is negligible
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yry
2

yry
2

® stiff k also implies if
- — —— 2G ( —

f_) is negligible
pv T 2b 6 2b T

The offsets Aif^ and Aif^ are positive in the direction of positive

ip -if ; Ay^ and Ay^ are positive in the direction of positive b )-(y -y
9 ) .

The differences in yaw displacement between the wheelset pair, the truck and

the carbody have an opposite effect on the rear truck than on the front truck

because the two trucks yaw in opposite directions in curves. This action

is illustrated by the sign change in equation (2-12). The notation used is

such that whenever two signs appear in front of a term, the sign at the top

is associated with the front truck and the one at the bottom is for the rear

truck. When a term has only one sign, the same expression is used for both

trucks

.

The generic truck model is reduced to particular truck configurations

by assigning appropriate stiffnesses and steering gain values, as given in

Table 2.2.

Table 2.2 Generic Truck Simplifications

*
TRUCK TYPE

CNI ha k
9s2

G
i

G
2 s G

4

Conventional 0 0 0 0 0 0 0

Self Steering k
b2

0 k _
s2

0 0 0 0

S Prototype k
h2

0 0 G 0 0 0

L Prototype k
b2

0 k
9s2

0 G
G+l

b
~ 0

U Prototype 0 k
b3

0 0 0 0 G

k
For these trucks G c , G^ , H ,

o 6 1
L O 9 tv

Q3 s3
0 .
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2.3 Stability Model

In Section 2.1.1 a quantitative stability performance index was defined

as the lowest forward speed of the vehicle which yields a vehicle dynamic

mode with zero damping. This section discusses two linear models which have

been used in the parametric studies. The first is a six degree of freedom

truck model which treats the carbody as an inertial reference and the second

is a 15 degree of freedom full carbody model.

A complete description as well as a listing of the equations of motion

for the 6 DOF model are presented in Appendix C. This model was used to

compute most of the stability information presented in this report.

In order to be confident that a single truck model was sufficiently

accurate the results were ocassionallv compared to a 15 DOF full carbody

model. The complete description and equations of motion for this model are

presented in Appendix E. In general the 6 DOF model proved sufficiently

accurate to justify its use.

2.3.1 Numerical Metho ds

The condition of lateral instability or hunting has traditionally

been described in terms of the forward speed or critical speed at which the

damping in the least damped eigenvalues equals zero. The vehicle oscillates

at the critical speed and is unstable at higher speeds.

The solution technique for calculating the critical speed consists of

selecting a speed, calculating the system eigenvalues at that speed and

adjusting the speed appropriately for the next iteration until the damping

in the least damped eigenvalue is approximately zero.

To calculate the system eigenvalues, the six or 15 second order

differential equations of motion (corresponding to the 6 or 15 DOF models.
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respectively) are written in matrix form as:

where y is a 6x1 or 15x1 vector of position degrees of freedom

M is the inertia matrix

K and C
g

are the suspension stiffness and damping matrices,
respectively

K and _C are the stiffness and damping matrices resulting from
TKe wheel/rail interaction

(K , C , K and C all correspond to a conventional rail vehicle)

.

—s —s —r ~r

Kf and _C are the stiffness and damping matrices, respectively, due
to the interaxle and forced steering linkages.

Two computer programs have been developed for this study; program

GEN6 calculates the critical speed of the 6 DOF generic truck model and

program GEN15 of the 15 DOF full vehicle model. These programs

also calculate the eigenvectors to determine the modes of motion at a

certain speed.

2 . 4 Steady-State Curving Mode l

As discussed in Section 2.1.2 the primary curving performance index

used in this report is the work done at the flanging wheel.

Appendix F presents the equilibrium equations for a single wheelset

negotiating a constant radius curve while Appendix H shows the development

of the full vehicle steady-state curving equations. The model is fully

nonlinear and includes:

• single or two point w’neel/rail contact

• nonlinear wheel/rail geometry including large contact angles

• nonlinear primary and secondary suspension characteristics

• laterally flexible rails
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• nonlinear wheel/rail friction characteristics

Figure 2.11 is a flow chart of the steady-state curving program SSCURV.

The nonlinear algebraic equations are solved by subroutine SROOTS which has

proved to be a very robust equation solver. The details of SROOTS are given

in Appendix H. Subroutine WHLST1 solves for wheelset equilibrium assuming

single-point contact at both wheels, while subroutine WHLST2 solves for

wheelset equilibrium under the assumption that the flanging wheel is in two-

point tread-flange contact and the inner wheel is in single-point tread

contact. The program computes:

• wheel/rail forces

• axle angles of attack

• wheel and axle L/V ratios

• work done at all wheel/rail contact points

2 . 5 Baseline Rai l and Vehicle Parameter s

The analytic models described in this chapter are generally capable of

representing vehicles with arbitrarv wheelset-truck-carbodv interconnections.

As a result, the models can be used to study conventional, self-steered, and

f orced-steered radial truck designs. The reduction of the generic truck model

to conventional, self-steered, and three proposed forced-steered truck

configurations is shown in Table 2.2. The forced-steered truck studies in

this report are based primarily on the "L" design. This design was selected

as one which has potential for application to transit systems and has the

inherent features in terms of capability to parametrically establish values

of overall shear and bending stiffnesses and the steering gains which are the

most important design parameters for forced-steered truck curving performance.

The detailed study parametric results are illustrative of forced-steered truck
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design performance in general. However, there may be relative performance

(and detailed design) benefits of specific configurations of forced-steered

truck designs not studied in this report. Detailed studies of alternate

configurations represent an area of future research.

The baseline rail/vehicle parameters used in this study are listed in

Table 2.3. They were selected to represent typical conventional and steered

urban transit vehicles.

Two wheel/rail profiles were selected for this study: a new wheel and a

Heumann wheel both on worn rail of standard gage. These were identified as

representative two-point contact and single-point contact profiles,

respectively, as described below. Both profiles, obtained from tables in

[22], were smoothed and modified to account for a centered rolling radius

of 14.0 in. Geometric constraint functions for these two symmetric profiles

are described and shown in Appendix F (Section F.1.2). The new wheel

represents a new AAR wheel with 1/20 tread taper and a steep flange. As

discussed in Appendix F, single-point contact occurs in the tread region,

but due to the steep flange of this profile, two points of contact occur

when the wheelset lateral excursion equals the flange clearance. The Heumann

wheel profile was designed with the intention of maintaining single-point

contact for all wheelset excursions to obtain a profile that would maintain

its shape as it wears [23]

.

Linear creep coefficients typical of the tread and flange of the two

wheel profiles were calculated using Hertzian contact theory. Rail and wheel

radii of curvature were obtained from [22]. Flange creep coefficients are
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Table 2.3 Baseline Rail/Vehicle Parameters

WHEEL RAIL INTERACTION PARAMETERS

WHEEL/RAIL NEW WHEEL HEUMANN WHEEL

f
11T

*
[lb] 1.09E6** 1.01E6

f
12T

[ft-lb] 8615. 9620.

f
22T

43
i

—

1

1-M

UU-l 82. 14.

f
33T

[lb] 1.18E6 9.805E6

£
iif

[lb] 7.34E5 5.755E5

f
l2F

[ft-lb

]

6820. 4735.

f
22F

[ft
2
-ib] 2. 1.

f
33F

[lb] 6.71E5 5.26E5

3
11

0.05 0.17

5
o

0.05 0.195

A 0.0 4 .

4

X 0.05 0.20

li 0.30 0.30

GEOMETRY PARAMETERS

r
0

[ft] 1.167 h
ts

[ft] 1.48

a [ft] 2.32 h
tp

[ft] 0.52

b [ft] 3.75 h
c

[ft] 2.375

d
P

[ft] 1.92 Ls [ft] 23.75

h
cs

[ft] 2.90 d
s

[ft] 3.71

Creep coefficients are half-Kalker values with a nominal contact patch
normal load of 15,000 lb.

** 6
E represents to the power of 10, e.g., 1.0E6 = 1.0 x 10
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Table 2.3 Baseline Rail/Vehicle Parameters (Cont'd)

COMPONENT MASSES AND MOMENTS OF INERTIA

WHEELSET
CONVENTIONAL

TRUCK
RADIAL
TRUCKS

M [slug]
w

126. 151.

Wx Eslug-ft
2

] 399. 494.

V [siug-ft
2

] 28. 28.

hz [ sluS- ft2 l 547. 946.

TRUCK

M [slug] 146. 146.

I
tx

[slug-ft
2

] 1166. 1166.

^
tv

[slug-ft
2

] 668. 668.

I
£z

[slug-ft"] 1251. 1251.

CARBODY (unloaded)

M
c

[slug] 1560.

I [slug-ft"]
cx

4.40E4

I [slug-ft"]
cy

8.96E5

I [slug-ft
2

]
cz

8.96E5

VEHICLE WEIGHT CONVENTIONAL RADIAL

W [lb]*

(Unloaded)
75,800 79,000

r ,
**

W [ lb ]

( Yoaded)
95,800 99,000

W , , ,
= 2 trucks with wheelsets + carbody.

v unloaded

**
W ,

= 2 trucks with wheelset + carbody + passengers .

v loaded
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Table 2.3 Baseline Rail/Vehicle Parameters (Cont’d)

PRIMARY SUSPENSION

STIFFNESSES AND DAMPING

New Wheel Heumann Wheel

Conventional Radial Conventional Radial

k [lb/ft]
px

1.35E5 1.20E5 6.5C E5 5.00E5

C [lb-sec/ft]
px

574. 756. 2760. 3150.

k [ lb / f t ]

py
7.50E5 k

pz
[lb/ft] 1.0E6

C [lb-sec/ft]
py

620. C
pz

[Ib-sec/ft] 600.

INTERWHEELSET STIFFNESSES

Conventional Radial

k
^2

[ft-lb/rad] 0.0 1.0E3

k „ [lb /ft]
sz

0.0 1.0E6

SECONDARY SUSPENSION

k [Ib/ft]
sy

19,500 k
sz

[lb/ft] 20,400

C [lb-sec/ft]
sy

1420. C
sz

[ lb-sec/ f t

]

1630.

k • [ft-lb/rad]
S Y

2.6E6

C
,

[ ft-lb-sec/rad

]

S b*

0.0 t
b

[ft-lb] 7500.

FORCED-STEERING PARAMETERS

G _ = 0.1579
prl

H = 0.0

2-31



k
less than tread coefficients (bv about 30% for longitudinal and

lateral coefficients) . This decrease, in flange creep coefficients is

expected since the contact patch area decreases in the flange, and its

effect outweighs the opposite effect of increased ellipticity.

Linear profile coefficients were computed by linearization of the

profile functions about the centered wheelset position. The nominal

conicity in the tread of the Heumann wheel profile is 0.20, compared with

a conicity of 0.05 for the new wheel profile.

The vehicle dimensions and weights are representative of urban transit

trucks. Specifically, the geometry, masses and inertias are based on those

kk
reported for the existing and modified PATCO Pioneer III trucks [24 1.

The mass and inertia parameters reflect the fact that in yaw and roll the

contribution of the traction motor must be included. In addition, for radial

trucks the contribution of the steering arms is added. The mass and roll and

pitch inertias of the truck include the side frames, braking equipment, and

bolster. The bolster does not influence the truck yaw inertia.

The primary, secondary, and interaxle suspensions are typical of urban

truck designs. The primary longitudinal stiffnesses were chosen so that all

baseline vehicles have the same stability characteristics, i.e., a critical

speed of 120 mph . The interaxle bending stiffness is quite low for the

self steered radial truck (k^ = 1*0E3 ft-lb/rad), whereas it is quite high

for forced-steered trucks as a result of the stiffnesses of the carbody to

wheelset linkages to achieve improved curving performance. This is discussed

k
The contact patch ellipse (a/b) ratio for the flange patch is limited to 10.

This agrees with calculations by British Rail which show that the (a/b) ratio

rarely exceeds 10 [9].

kk
Port Authority Transit Corporation.
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in more depth in Chapter 4.

The baseline track curvature steering gain used in the performance

studies of the forced-steered truck designs is the pure rolling line gain,

G . . The pure rolling line gain is the wheelbase divided bv the truck
pr£

centerpin spacing, according to equation (2-9). A limited study of alternate

track curvature steering gains was conducted and the results, presented in

Chapter 4, suggest that G
Q
results in slight understeering of the wheelsets

during flanging. This implies that gains slightly larger than G
^
may be

appropriate during flanging. However, the selection of an optimal track

curvature steering gain represents an area of future research. Thus, for

the forced-steering studies in this report, the track curvature steering

gain is G The cant deficiency steering gain, H, is set to zero in the

forced-steered studies since the curvature effects are in general much more

important

.
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CHAPTER 3

STABILITY OF CONVENTIONAL, SELF-STEERED
AND FORCED- STEERED RADIAL TRUCKS

3 . 1 Introduction

The speed capability of railway vehicles is limited by (self-excited)

motions in the lateral plane commonly referred to as hunting. The speed at

which hunting occurs is called the critical speed, and for safety reasons

a well-designed vehicle will have a critical speed much higher than the

maximum operating speed. Significant study has been devoted to determining

the critical speed of conventional and self-steered radial trucks [16, 17, 25].

The development of forced~steered concepts which are directed to improving

curving performance introduces additional dynamic effects due to steering links

in a vehicle [20], and requires detailed evaluation.

In this chapter the stability properties of the following four truck

designs each with new and Heumann wheels are discussed: a conventional truck,

a self-steered radial truck (SSR)

,

and two (L-type) forced-steered radial

4
trucks, one (FSR I) with low primary longitudinal stiffness (k = 7.0 x 10

px

lb /ft) and the second (FSR II) with very low primary longitudinal stiffness

3
(k = 1.0 x 10 lb/ft). As discussed in Section 2.3, a six degree of freedom
px

(DOF) truck model and a 15 DOF vehicle model are available to compute the

stability characteristics in terms of critical speed. The 6 DOF model,

incorporated in program GEN6 , assumes that the front or rear truck is

attached to a constant forward moving reference frame through the secondary

suspension system. The degrees of freedom associated with the model are the

lateral and yaw displacements of the truck frame and the two wheelsets. The

model used in program GEN15 is that of a full vehicle consisting of two trucks

and a carbodv. The carbody degrees of freedom are the lateral, yaw and roll



displacements while the degrees of freedom of the two trucks are the same as

those in program GEN 6 . The forced—steering linkages introduce a destabilizing

moment on the front truck and stabilizing moment on the rear one, and thus

the front truck is less stable than the rear one. For a conventional and

self-steered radial truck, the stability of the front truck is the same as

that of the rear one. Critical speeds, calculated with programs GEN6 and GEN15,

are compared in Table 3.1. The critical speed of the front truck gives an

accurate prediction of the vehicle critical speed. This is true except for

cases when the carbody mode is important. With the conventional and self-

steered trucks, this occurs when the truck kinematic frequency approximately

equals the carbody natural frequencies of about 1 Hz, resulting in carbody

hunting. The speed at which this happens is usually below 50 mph and occurs

only for short periods of time when the vehicle speeds up or slows down.

The carbody hunting problem can usually be solved by increasing the secondary

lateral damping [26].

Table 3.1 Comparison of Critical Speed of Baseline Conventional and
Self-Steered Radial Truck Designs with New Wheels as Calculated
with Programs GEN 6 and GEN15

Baseline ^
Truck Design

Critical Speed (mph)

Front truck (GEN6) Vehicle (GEN15)

Conventional r

(k = 1.35 x 10 lb/ft)
px /

120.3 120.3

Self Steered Radial

(k = 1.20 x 10
5

lb/ft,
px

k
^2

=1-0 x 10^ ft-lb/rad,

k = 1.0 x 10
6

Ib/ft)
s2

120.1 120.3

With new wheels .
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Besides carbody hunting mentioned above, additional carbody modes can

occur with forced-steered trucks due to the introduction of steering linkages

between the wheelsets and carbody. Figure 3.1 shows a comparison of the

critical speed of a forced-steered radial truck (FSR I) with new wheels as a

function of effective interaxle bending stiffness, k^* calculated with programs

GEN6 and GEN15. The critical speeds for the 6 DOF front truck and the 15 DOF

vehicle models are in agreement up to a high value of ^ at which the

critical speed for the full vehicle model decreases suddenly. It was found

that the lowest unstable mode (the mode that occurs at the lowest speed) is

the one corresponding to the carbody lateral motion [27]. This instability

does not occur with a conventional or a self-steered radial truck. It is

caused by the wheelset-carbody linkages of a forced-steered truck and can

be eliminated by increasing the secondary lateral damping. This mode occurs

particularly at low values of creep coefficients and conicity, and is

explored in more detail later in Section 3.4.

Unless otherwise specified, all the results of the parametric studies

have been performed with program GEN6 for the front truck. Periodic checks

were performed with program GEN15 when the carbody mode plays an important

role

.

The parametric study includes the variation of the truck critical speed

as influenced by the primary suspension stiffnesses, secondary yaw stiffness,

creep coefficients, and conicity. The effect of the interaxle stiffnesses

on the critical speed of the self-steered and forced-steered trucks is also

investigated. Finally, the phenomenon of kinematic instability associated

with the forced-steered truck is addressed.

The secondary lateral stiffness and damping are usually determined from
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Critical

Speed

(mph)

Interaxle Bending Stiffness, k^ (.ft-lb/rad)

Figure 3.1 Critical Speed as a Function of Interaxle
Bending Stiffness for a Forced-Steered Radial
Truck with New Wheels Calculated Using 6 and
15 DOF Models
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ride quality considerations to yield carbody natural frequencies of about

1 Hz and a damping ratio of about 0.2, and hence are not varied in the study.

To avoid unrealistically high damping ratios when a stiffness is decreased,

the ratio of the damping to the corresponding stiffness is held constant as

the stiffness is varied.

3 . 2 Stability of Conventional Trucks

The effects of primary suspension stiffnesses, secondary yaw stiffness,

creep coefficients and conicity on the critical speed of a conventional truck

have been evaluated using the 6 DOF model.

The critical speed of a conventional truck having new and Heumann wheels

as a function of primary longitudinal stiffness is shown in Figure 3.2. The

stability behavior is similar for trucks with new and Heumann wheels. At all

stiffnesses, the critical speed of a truck with new wheels is higher due to

the small conicity (A = 0.05 for new wheels vs. A = 0.20 for Heumann wheels).

For trucks with either wheels, the critical speed increases as the primary

longitudinal stiffness, k , is increased, reaches a maximum and then
px

decreases as k is increased further. Since the wheelsets of a conventional
px

truck are stabilized by the primary suspension, a low value of k decouples

the wheelset yaw motions from the truck motion. The resulting loosely

restrained wheelset yaw motions are referred to as individual wheelset

modes [26]. As the primary longitudinal stiffness k is increased, the

coupling between the wheelset and truck yaw motions increases. Coupling to
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Primary Longitudinal Stiffness, k
^

(lb/ft)

Figure 3.2 Effect of Primary Longitudinal Stiffness

on the Critical Speed of a Conventional

Truck with New and Heumann Wheels.
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the truck frame introduces a destabilizing effect from the increased

effective mass and a stabilizing effect from the connection to the inertial

carbody through the secondary suspension system. At the value of k for
px

which the critical speed reaches a maximum, the motion of the two wheelsets

are out of phase relative to the truck frame as indicated by the eigenvector

corresponding to the least damped eigenvalue. Consequently a yaw motion of

one wheelset is stabilized by the truck frame, which in turn is stabilized

by the inertial carbody and the other wheelset. At very high values of

k , the vaw of the wheelsets is strongly coupled to the vaw of the truck
px

frame. The wheelsets and the truck frame yaw as a rigid body, stabilized

by the inertial carbody through the secondary yaw stiffness.

Suspension elements in a truck will change their properties with time

and wear due to general deterioration. These changes may lower the critical

speed. In order to allow for a significant reduction in critical speed and

still maintain a laterally stable vehicle above the maximum operating

speed, vehicle suspension design should be based on a high critical speed.

For this reason, in this report baseline suspension parameters are

selected such that the trucks have critical speeds of 120 mph . As marked in

Figure 3.2, the primary longitudinal stiffness of a baseline conventional

truck with new wheels is k = 1.35 x 10^ lb/ft and the stiffness of a baseline
px

conventional truck with Heumann wheels is k = 6.50 x 10 lb /ft. The truck
px

with Heumann wheels requires a stiffer primary longitudinal stiffness to

achieve the same critical speed as that of a truck with new wheels due to

the effect of the higher conicity Heumann wheel. The primary longitudinal

stiffnesses of the baseline conventional trucks are within the range of
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typical stiffnesses: 1.0 x 10^ lb/ft < k < 2.0 x 10^ lb/ft. For instance,

the primary spring of UTDC's existing CTA 2400 rapid transit truck has a

primary longitudinal stiffness of 2.0 x 10"
3

lb/ft [19], The standard WMATA car/

Rockwell truck has a moderately stiff longitudinal stiffness of 3.0 x 10"
3

lb/ ft [2]- The Budd Pioneer III truck is very stiff with a primary longitudinal

stiffness of 3.5 x 10^ lb/ft [28].

The effect of primary lateral stiffness, k , on the critical speed of a
PY

conventional truck with new wheels is shown in Figure 3.3. For soft k ,

py

the wheelsets are relatively free to move laterally with respect to the truck

frame, resulting in an individual wheelset mode in the lateral direction. As

k is increased, the wheelset lateral motions start to affect the truck frame.
py

Lateral motion of the two wheelsets in the same direction influences the

truck to move laterally in that direction, while a lateral motion of both

wheelsets in opposite directions causes the truck to yaw. However, the truck

motions are restrained by the secondary suspension system which is connected

to the carbody. As a result the critical speed increases as k is increased.
py

At high values of k the critical speed reaches an asymptote because the

wheelsets are rigidly connected to the truck frame in the lateral direction,

and stabilization is provided indirectly by the secondary suspension. A high

value of primary lateral stiffness is chosen for the baseline trucks, k
py

7.5 x 10 Ib/ft, and is typical of current transit truck designs.

Figure 3.4 shows the effect of secondary yaw stiffness, k
g^,

on the

critical speed. Below a value of 10 ^ ft-lb/rad the secondary yaw stiffness

does not affect the critical speed. In this range the wheelsets are

stabilized by the truck frame through the primary suspension system. As

. is increased above 1C"
3

sip
secondary yaw stiffness, k^,, , is increased above 10 ft-lb/rad, stabilization
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of the truck frame by the carbody is significant and results in an increase

‘sip
in the critical speed. In this study, the secondary yaw stiffness is

,

2.6 x 10 f t-lb/rad

.

The combined effect of creep coefficients and conicity on the critical

speed of a conventional truck with k = 1.35 x 10^ lb/ft is plotted in

Figure 3.5. Reducing creep coefficients or conicity increases the critical

speed. Lowering creep coefficients or conicity reduces the centering moment

(which steers the wheelset back to the track centerline once it is displaced)

generated bv the longitudinal creep forces. Hence the wheelset steering

action is also reduced and an increase in the critical speed occurs. In this

study, half Kalker creep coefficients are used. Kalker's theoretical linear

creep coefficients are typically reduced by 50% to account for field experience

in which reduced values are attributed to the effects of rail contamination

and other field conditions.

3 . 3 Stability of Self-Steered Radial Trucks

The stability and curving performance of a self-steered radial (SSR)

truck is determined primarily by the primary longitudinal stiffness, k _,px

and the interaxle bending stiffness, k^ 0 . The effect of these parameters on

the critical speed of a self-steered radial truck is analyzed with the 6 DOF

model. The variation of the critical speed as a function of the primary

lateral stiffness, secondary yaw stiffness, creep coefficients, conicity,

and the interaxle shear stiffness is also examined.

The critical speed of a SSR truck having new and Heumann wheels as a

function of the primary longitudinal stiffness, k , is shown in Figure 3.6.
px

The effect of k on the critical speed of a truck with new or Heumann wheels
px

is similar to that observed for the conventional truck. At low values of k
px
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the wheelset yaw motions are almost decoupled from the truck yaw. The

interaxle stiffness provides direct communication between the two wheelsets,

resulting in a higher critical speed than that of a conventional truck having

the same primary suspension stiffnesses. As k is increased the critical
px

speed increases until a maximum value is reached. In this region the

stabilizing effect from the secondary suspension, as a result of the coupling

between the wheelsets and the truck frame, overcomes the destabilizing effect

of increased mass. Increasing k beyond this value results in a decrease
px

in the critical speed as a rigid configuration of the wheelsets and the truck

frame in the yaw direction is approached. At verv high values of k , the
px

interaxle stiffnesses further degrade the stability by locking the wheelsets

into a more rigid configuration in the lateral as well as yaw directions,

resulting in a lower critical speed than that of a conventional truck.

The results shown in Figure 3.6 are for SSR trucks with new and Heumann

wheels. These trucks are obtained by adding interwheelset connections to

conventional vehicles which result in an increase in the truck critical

speed. This increase is due to: (1) decoupling of the truck frame mass from

the wheelsets, which reduces the effective mass involved in the hunting

motion, and (2) the added stiffness (and slight increase in mass) from the

interwheelset links. Baseline self-steered trucks are chosen such that their

critical speeds are 120 mph
,
comparable with the critical speeds of the base-

line conventional trucks. This is accomplished by reducing the primary

longitudinal stiffness, k (which, as will be shown in Chapter 4, will
px

improve curving performance). From Figure 3.6 the k of a baseline SSR

5

truck with new wheels is reduced to 1.20 x 10 lb/ft; for a baseline SSR truck

with Heumann wheels, the stiffness is lowered to 5.00 x 10 lb/ft. A baseline
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critical speed of 120 mph for the SSR truck is consistent with the critical

speeds reported for self-steered articulated and cross-anchor trucks [8].

The effect of primary lateral stiffness, k , on the critical speed of a

SSR truck with new wheels is shown in Figure 3.7. At a low value of k ,

py

the wheelset lateral motions are almost decoupled from the truck motion but

they are coupled to each other through the interaxle shear stiffness. The

critical speed increases as k is increased. Further increases in k
py py

result in coupled lateral motions of the wheelsets and truck. Stabilization

is provided by the secondary suspension system at high values of k

.

Variations of the critical speed of the self-steered truck with the

secondary yaw stiffness, as shown in Figure 3.8, and with creep coefficients

and conicity, as shown in Figure 3.9, are very similar to those of a

conventional truck. The baseline value of secondary yaw stiffness is k^ =

2.6 x 10 ft-lb/rad.

Figure 3.10 shows the effect of the interaxle shear stiffness, k on

the critical speed of a self-steered radial truck with new wheels. At low

values of k^ > the wheelsets can sustain the yaw motions represented by the

in-phase (i|; + \p^) and the out-of-phase (i[i^ - ip^) coordinates . The in-phase

+ 1^
2

) mode imposes a net yaw moment on the truck frame while the out-of-

phase (i|j - motion does not. The interaxle shear stiffness affects the

critical speed only at values high enough to suppress the in-phase (ip + \p^)

yaw mode, which tends to excite the truck frame motion, and allows interaction

between the two wheelsets in the lateral direction. The effect is an increase

in the critical speed. For stiffer values of k^
9

the critical speed remains

constant. The baseline value of interaxle shear stiffness, k 0 = 1.0 x 10

^

s2

lb/ft, is high enough to take advantage of the increased critical speed due
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Figure 3.8 Effect of Secondary Yaw Stiffness on the Critical Speed

of a Self-Steered Radial Truck with New Wheels
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to the interaction of the wheelsets laterally.

The influence of the interaxle bending stiffness,k^* * on the critical

speed of a self -steered radial truck with new wheels is shown in Figure 3.11.

At low values of k^* t *ie bending stiffness of the wheelsets is provided

entirely from the primary longitudinal stiffness, k . The constant value
px

of k is responsible for the constant critical speed. A low value ofpx r

3
interaxle bending stiffness, k^ = 1*0 x 10 ft-lb/rad, is selected as

baseline. Increasing k^ improves stability as more communication between

the two wheelsets in the yaw direction is achieved. However, above a

specific value an increase in k^
?

decreases the critical speed as the two

wheelsets are locked by the interaxle stiffnesses as a rigid body which is

stabilized by the primary suspension only. This effect occurs at high values

° f ^2-

3 . 4 Stability of Forced-Steered Radial Trucks

Vehicles with f orced-steered radial trucks utilize passive wheelset-

carbodv linkages to sense track curvature and/or cant deficiency and adjust

their wheelsets into radial positions accordingly. The stability performance

of these vehicles is influenced by the primary, secondary, and effective

interaxle suspension stiffnesses (due to forced-steered linkages) and the

wheel/rail profile geometry in terms of nominal conicity. In these studies,

the critical speed of an L-type forced-steered truck as a function of

suspension stiffnesses, creep coefficients, and conicity is established.

The steering action gains of the generic truck model for the wheelsets to '

*
kinematically track the pure rolling line in curves are: = 0, = 0.1579,

G 0 = 0.3088, G. = G r = G, = 0. All cant deficiency steering gains are
j 4 5 o

•k

Assuming rigid steering linkages and no flange forces.
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zero (H
p

= H
?

= H^ = 0) .

The stability properties of a forced-steered truck are not unique since

different combinations of primary longitudinal stiffness, k , and effective
px

interaxle bending stiffness, k^ > can yield the same critical speed. For

this reason, two forced-steered truck designs are studied. Both designs

represent trucks with low values of k , which is advantageous for curving
px

performance as discussed in Chapter 4; the interwheelset and wheelset-carbody

linkages provide the requisite stiffness for stability. The two designs

4 3
are (1) FSR I with k = 7.0 x 10 lb/ft, and (2) FSR II with k = 1.0 x 10

px px

lb/ft. The soft primary suspensions of these designs are not representative

of current transit trucks. However, they have been selected to study the

advantages of reduced k on the stability (and curving) behavior of forced
px

steered trucks. A primary spring has been designed for UTDC with a very soft

4
longitudinal stiffness of k = 3.0 x 10 lb/ft [19]. The spring, consisting

of an assembly of rubber shear pads, is for potential use on the CTA 2400

rapid transit trucks. Future experimental studies may be required to

determine the practical lower limit which can be reached by softening k .

The critical speed as a function of the interaxle bending stiffness,

k^
2

>
of the two forced-steered radial trucks, FSR I and FSR II, with new

wheels is shown in Figure 3.12 and with Heumann wheels in Figure 3.13. In

The critical speeds of Figures 3.12 and 3.13 were calculated using the

6 DOF truck model. The results using a 15 DOF vehicle model have a decrease
in critical speed at a high value of k^ , as shown in Figure 3.1. However,

this drop in critical speed occurs for values of the bending stiffness k^
0

outside the design parameter region of primary interest.
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all cases the effect of k^ on the critical speed is similar. At low values

of the bending stiffness of the primary longitudinal suspension is mainly

responsible for the stiffness which governs the stability. Thus, the design

with stiff er k , FSR I, has a higher critical speed for soft k, The
px b2

critical speed increases with increasing k^
9

as more communication between

. At high values of k^
9 , the inter-

axle stiffness locks the wheelsets as a rigid body, which results in a

decrease in the critical speed. For very stiff k^* the critical speeds of

the two designs, FSR I and FSR II, become the same. As before, the critical

speeds of the trucks with new wheels are higher than those of trucks with

Heumann wheels at the same stiffnesses due to the stabilizing influence of

the lower conicity new wheel. The values of k, corresponding to baseline
b 2

forced-steered radial trucks having 120 mph critical speeds are marked in

Figures 3.12 and 3.13, and are summarized in Table 3.2.

the wheelsets is achieved through k^

Table 3.2 Interaxle Bending Stiffnesses for Baseline Forced-Steered
Radial Truck Designs with Different Wheel/Rail Profiles
All Having Critical Speeds of 120 Mph
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Figure 3.14 shows the effect of primary longitudinal stiffness, k
px

on the critical speed of the forced -steered radial truck FSR I with new

wheels. The result is similar to that obtained for the critical speed of the

SSR truck with new wheels shown in Figure 3.6. However, for soft k
px

higher critical speeds are achieved due to the high value of the interaxle

shear stiffness, k „ , of the f orced-steered truck (k 0 = 1.0 x 10^ lb/ft).
s2 s2

This prevents the wheelsets' in-phase (ik + yaw mode and tends to excite

the truck yaw motion. The only possible yaw mode is the out-of-phase ('J;
- ;f 0 )

which requires displacement of the interaxle bending stiffness, k^ . Thus,

the wheelset pair is partially stabilized bv the carbody through k, _ . (More

complete stabilization via k^ is achieved with a stiffer interaxle bending

stiffness. Here, for FSR I, only an intermediate value of is used: k^ =

1.68 x 10
5

ft-lb/rad). The truck frame yaw motion is also stabilized by the

carbody through the secondary yaw stiffness. As a result, at low values of

k^ although the wheelset yaw motions are not coupled directly to the truck

yaw, both are stabilized by the carbody. As the primary stiffness, k , i s

increased, the wheelset yaw motions couple with the truck yaw resulting in an

elastically coupled wheelset mode and increased critical speed. At very high

values of k , the truck and wheelsets move in a rigid truck mode,
px

Figure 3.15 shows the influence of primary lateral stiffness, k , on

the critical speed of a forced- steered radial truck, FSR I, with new wheels.

4
At low values of k (less than about 10 lb/ft) the critical speed approaches

PY

zero. This is caused by the secondary steering action (G^ steering gain

effect) which becomes significant at low values of k . Due to the stiff
py

k the motion of the wheelsets is coupled in the lateral direction. As k
s2

r pv

is increased, the wheelset modes become more elastically coupled (through the
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truck frame) and eventually a rigid truck mode is achieved. The secondary

suspension system and coupling due to forced-steering from the carbody

provide stabilization.

The effect of secondary yaw stiffness, k ., on the critical speed of a
Sip

forced-steered radial truck, FSR I, shown in Figure 3.16 is similar to that

s

of a conventional truck shown in Figure 3.4. For values of k . below 1CT
sty

ft-lb/rad, the critical speed is insensitive to changes in k . The wheelsets

are coupled directly through the interaxle stiffnesses and indirectly through

the truck frame (elastically couoled wheelset mode) . A high value of k
,

sty1

limits the truck yaw displacement and communication between the two wheelsets

is achieved primarily through the interaxle stiffnesses. Stabilization of

the truck frame by the carbody is significant and the critical speed

increases

.

Figure 3.17 shows the effect of the interaxle shear stiffness, k
9 , on

the critical speed of a forced-steered radial truck, FSR I, with new wheels.

The behavior is very similar to that exhibited by the SSR truck (Figure 3.10).

High values of k^ increase the critical speed due to the interaction of the

two wheelsets in the lateral direction, as explained before.

Steering linkages introduce a destabilizing moment on the leading truck of

a forced-steered vehicle [ 20] . This destabilizing moment is proportional to

the steering gain and steering linkage stiffness. It is expected that this

destabilizing moment at some point cancels the centering moment, which is

proportional to G and k^
9

and inversely proportional to creep coefficients

and conicity. Studies using the 15 DOF model have been performed to determine

the effects of conicity and creep on the critical speed of a forced steered

radial truck, FSR I. The results for conicities larger than 0.025 are
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Figure 3.16 Effect of Secondary Yaw Stiffness on the Critical Speed

of a Fcrced-Steered Radial Truck, FSR I, with New

Wheels
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plotted in Figure 3.18. The critical speed increases for decreased conicitv

and decreased creep coefficients. The results for very low values of

conicity are shown in Figure 3.19, with the conicity plotted in a logarithmic

scale. It is noted that the carbody mode plays a role for conicity values

below 0.025. Figure 3.19 shows that the critical speed approaches zero at a

very low value of conicity. The natural modes (eigenvectors) show that at

very low values of conicity, corresponding to almost cylindrical wheels, the

whole vehicle moves almost as a rigid body at very low frequencies. This

occurs because the longitudinal creep forces that provide the stabilizing

moment are very small for small values of conicity. The kinematic instability

occurs when the stabilizing moment is overcome by the destabilizing moment

of the forced-steering linkages on the front truck. Surjana [27] established

the importance of employing finite secondary yaw suspension stiffnesses

(k > 1 x 10° ft-lb/rad) in forced steered trucks as a means to delay the
s 'p

occurrence of kinematic instability to very low values of conicity (less than

0.01). It can be concluded that kinematic instability does not occur with a

forced-steered truck having the baseline suspension stiffnesses, and a wheel

conicity of 0.05 or higher.
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CHAPTER 4

CURVING PERFORMANCE OF CONVENTIONAL, SELF -STEERED

,

AND FORCED -STEERED RADIAL TRUCKS

4 . 1 Introduction

The steady-state curving performance of conventional rail vehicles is

influenced strongly by vehicle suspension stiffness elements and wheel/rail

profile geometry. As suspension elements between the wheelsets and trucks

are stiffened for stability, they prevent radial alignment and induce

increased lateral flange forces, especially on tight curves which prevent

the wheelsets from developing sufficient rolling radius difference to

operate on the pure rolling line. Advanced truck configurations are

intended to alleviate these fundamental curving problems while providing

adequate stability.

In curved track, the distance which must be traversed along the outer

rail is greater than the distance along the inner rail. For a curve of large

radius, this difference in distance is small and a wheelset can roll without

slip around the curve by displacing outwards slightly. This increases the

rolling radius of the outer wheel and decreases the rolling radius of the inner

wheel such that the wheel and rail path lengths are identical. This funda-

mental effect in steady-state curving is known as the lateral shift of the

''zero longitudinal creepage" or "pure rolling” line toward the outer rail

which occurs with increasing track curvature. When a free wheelset is centered

laterally over the pure rolling line and is aligned radially with the curve,

the lateral and longitudinal components of creepage (slippage) between the

wheel tread and the rail are zero. The wheelset is in steadv-state equilibrium

since no net forces/moments act on it in the lateral or yaw directions

(assuming balanced running and neglecting spin components of creepage)

.
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For shallow curves, the lateral shift of the pure rolling line is less

than the available flange clearance and a free wheelset at the pure rolling

line can steer itself perfectly around the curve. As the curvature increases,

the pure rolling line moves outward. When the lateral shift of the pure

rolling line exceeds the flange clearance, the wheelset is forced to remain

inside the pure rolling line, resulting in a condition of sustained flange

contact. One wheel of the wheelset must slip or slide on the rail as the

wheelset rotates. To satisfy equilibrium, the wheelset adopts a positive

yaw angle of attack.

In a rigid truck, the two wheelsets are locked by an infinitely rigid

primary suspension preventing any relative lateral or yaw displacement between

the wheelsets. As a rigid truck negotiates a curve, it is impossible for

both wheelsets to align radially and thus perfect steering cannot be achieved.

The rigid truck will assume an equilibrium configuration. (See [6, 25] for

analytic expressions for the rigid truck equilibrium geometry based on linear

curving models.)

A realistic truck with some wheelset bending and shear flexibility will

assume a steady-state geometry in between the free wheelset and rigid truck

configurations. If the shear and bending stiffnesses are fairly soft, the

wheelsets of the truck will behave like free wheelsets. For a stiff truck

with large shear and bending stiffnesses, the behavior will be closer to that

of a rigid truck. Figure 4.1 shows pictorially the equilibrium geometry of a

truck with intermediate shear and bending stiffnesses negotiating a tight

curve. This flexible truck allows bending deflection to occur, resulting in

a lead wheelset angle of attack and flange force lower than those which occur

for the rigid truck configuration. Also contributing to the reduced angle of
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Outer

Figure 4.1 Steady-State Equilibrium Configuration
for the Wheelsets of a Flexible Truck
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attack is the equilibrium requirement that the rear wheelset swing toward the

outer rail and maintain near radial alignment.

In this chapter the curving performance of rail vehicles employing

conventional, self-steered, and forced-steered radial trucks are investigated

k
using the detailed steady state nonlinear model described in Section 2.4.

The effects of track curvature, suspension design, and wheel/rail profile

are evaluated.

The work in the contact patch(es) at the flanging wheel is selected as

the principal curving performance index. The work index is receiving

increasing acceptance as an indicator of curving performance since it is

related to wheel and rail wear and train rolling resistance [9, 29].

The wheel/rail profile has a strong influence on vehicle curving

performance. The profile determines the nature of the wheel/rail contact

at the flanging wheel as the wheelset is displaced laterally. Some profiles,

such as the Heumann wheel profile shown in Figure 4.2 and discussed in

Appendix F, are characterized by a smooth transition of a single point of

contact from tread to flange with increasing lateral excursion. Other

profiles such as the new AAR 1 in 20 wheel profile, have steep flanges,

for which simultaneous two point contact occurs at the tread and flange when

the net wheelset lateral excursion equals the flange clearance. Single

point wheel/rail contact occurs at other lateral excursions, i.e., in the

tread region and high up on the flange, as discussed in Appendix F.

The forces and moments acting on a wheelset in steady state curving

are signif icantlv different when single-point and two-point contact occur

at the flanging wheel. When two-point contact occurs large longitudinal

The results of the curving parametric studies of these trucks with new and

Heumann wheels are summarized in Appendix I

.
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creep forces develop in opposite directions at the tread and flange contact

patches of the flanging wheel which partially cancel one another. With single-

point contact a longitudinal creep force develops at the flanging wheel which

is larger than the net longitudinal creep force which acts when two-point

contact occurs. The larger longitudinal creep forces which develop when single

point contact occurs result in a larger yaw restoring moment which helps the

wheelset to position radially. Thus, a wheelset with Heumann wheels develops

a larger restoring moment (at the same lateral force) than a wheelset with

new wheels, as shown in Figure 4.3 for the case of zero angle of attack and

a 10° curve. For a wheelset with Heumann wheels the lateral excursion is

less than flange clearance at low levels of lateral force. The outer (flanging)

wheel is in tread contact and a small longitudinal creep force develops. As

the wheelset with Heumann wheels is displaced laterally, corresponding to

higher wheelset lateral force, the outer wheel begins to flange and the

longitudinal creep force at the single contact patch becomes large (due to

the large rolling radius) . This results in a significant increase in the

wheelset yaw moment. Eventually the creep forces saturate as the outer wheel

rides high up on the flange and a maximum wheelset yaw moment develops. This

occurs for wheelset lateral forces greater than 8000 lb. For the wheelset

with new wheels, the lateral excursion equals the flange clearance and the

outer wheel is in two point tread-flange contact for the range of lateral

forces plotted in Figure 4.3. The longitudinal creep forces at the flange

and tread contact patches act in opposite directions, because the longitudinal

creep force at the flange contact patch is less than at the tread contact

patch, while at higher levels of lateral force, the longitudinal creep force
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at the flange contact patch is larger. This shift in direction of the

net longitudinal creep force at the flanging wheel is responsible for the

change from negative to positive yaw moments with increasing levels of lateral

force. The creep forces at the flange contact patch do not saturate until

the lateral force exceeds 14,000 lb. Results of further study have shown

that the difference in yaw moments with wheelsets having new and Heumann

wheels diminishes with increasing curvature. This is due to creep forces

which saturate earlier because of the larger longitudinal creepage which

occurs with increased curvature. In summary, the results of Figure 4.3 show

that a wheelset with Heumann wheels provides a larger restoring yaw moment

than a wheelset with new wheels, which suggest that the Heumann wheel

profile would be advantageous for curving.

The improved steady-state curving performance of a wheelset with Heumann

wheels as compared to new wheels is borne out by considering the work which

occurs at the flanging wheel. Figure 4.4 is a plot of the work versus lateral-

to-vertical (L/V) force ratio at the flanging wheel for a wheelset with new and

Heumann wheels negotiating a 10° curve with zero angle of attack. Lower levels

of work are expended for the wheelset with Heumann wheels at the same (L/V)

ratio. This is due to the fact that only single point contact occurs at the

outer wheel for all lateral excursions. For the wheelset with Heumann wheels,

the work increases with increasing (L/V) ratios as the components of creep

force and creepage grow. The work reaches a maximum at (L/V) - 0.7 (equivalent

to a wheelset lateral force of - 9000 lb)
,
when the creep force at the flange

contact patch saturates. Further increases in (L/V) ratio result in constant

work since the creep forces are fully saturated. For the wheelset with new

wheels, two-point contact occurs. The work at the flanging wheel is the sum of

4-8



Work

at

Flanging

Wheel

(ft-lb/ft)

(L/V) Ratio at Flanging Wheel

Figure 4.4 Flanging Wheel Work vs. (L/V) Ratio for New
and Heumann Wheels.

4-9



the work at the tread and flange contact patches. The work at the flange con-

tact patch increases significantly with increasing (L/V) ratio due to the large

increase in creep force, while the work at the tread contact patch diminishes

as the distribution of forces shifts from the tread to flange patches. The

creep forces at the flange do not saturate until (L/V) - 1.2 (equivalent to a

wheelset lateral force of 14,000 lb), which is out of the range of values

plotted in Figure 4.3. Again, the difference in flanging wheel work for

wheelsets with new and Heumann wheels decreases with increasing curvature

due to the earlier onset of creep force saturation.

These single wheelset model results are important because they strongly

govern the vehicle curving performance.

4 . 2 Curving Performance of Conventional Trucks

The dominant parameters influencing the steady- state curving behavior

of conventional trucks are the primary longitudinal stiffness and the wheel/

rail profile geometry. The primary longitudinal stiffness, k , is

2
equivalent to the total truck bending stiffness: k, = d k . For low values

d p px

of truck bending stiffness or of k the wheelsets can adopt yaw displace-

ments which are decoupled from the truck orientation. This allows the wheel-

sets to align radially in curves, which is beneficial for curving performance.

In Chapter 3, baseline stiffnesses were selected to give truck critical

speeds of 120 mph . As a result, the baseline primary longitudinal stiffness

of a conventional truck with new wheels is k = 1.35 x 10^ lb/ft, while
px

the baseline stiffness of a conventional truck with Heumann wheels is k =
px

6.50 x 10 lb/ft. These values are in the range of typical stiffnesses of

5 6
current transit trucks: 1.0 x 10 lb/ft < k < 2.0 x 10 lb/ft. As

px

mentioned in Chapter 3, the primary spring of the Chicago CTA 2400 rapid
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transit truck has a relatively soft longitudinal stiffness of 2.0 x 10

Ib/ft [19]. The standard WMATA car/Rockwell truck has a moderately stiff

primary longitudinal stiffness of 1.38 x 10 Ib/ft, while the Budd Pioneer

III truck has a very stiff primary longitudinal stiffness of 3.5 x 10^

lb/ft [2, 28]. Attempts have been made to reduce the longitudinal stiffness

through redesign of the primary bushing/shear pad assembly. The proposed

primary springs must fit in the space available in the existing trucks. A

modified bonded rubber bushing built for the WMATA car/Rockwell truck was

designed to achieve a minimum longitudinal stiffness of approximately

3.0 x 10
5

lb/ft [2]. Metalastick Canada has designed a new primary spring

consisting of flat rubber shear pads for the CTA 2400 rapid transit truck

4
which has a longitudinal stiffness of 5.0 x 10 lb/ft [28].

In the following paragraphs, the combined influence of k and curvature

on the curving behavior of a conventional truck with new wheels on worn rails

is discussed. In Figure 4.5 the effect of k^
x

on the work at the flanging

wheel is plotted for four curvatures: 2.5°, 5°, 10°, and 20° curves. For

shallow and moderate curves (2.5°, 5°, and 10°), the work increases as

k^ is stiffened; for the tight 20° curve, the work rises sharply and then

asymptotically reaches a constant as k is increased. For low values of

k , the wheelsets are loosely restrained in yaw, and can adopt yaw displace-
px

ments independent of the truck yaw position. The dominant creep forces which

act on the wheelsets are the lateral creep forces required to balance forces

from the primary lateral stiffness. On the other hand, a rigid wheelset-

truck configuration is approached at high stiffnesses, and the work approaches

a constant. This is expected since the increased bending stiffness will yaw

the wheelsets away from radial alignment. The wheelsets will develop
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Primary Longitudinal Stiffness, k (lb/ft)

Figure 4.5 Work at Flanging Wheel vs. Primary
Longitudinal Stiffness for a Conventional
Truck with New Wheels Negotiating 2.5°,
5°, 10°, and 20° Curves
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longitudinal creep forces to partially counteract the increase in yaw

stiffness, and these forces help to yaw the wheelsets back toward radial

positions. Eventually, the creep forces saturate at the adhesion limit and

the work at the flanging wheel reaches a constant. Further increases in k
px

have negligible effect.

In addition to the effect of stiffness, the creep forces which develop

are a function of curvature. At very low curvatures, the track is essentially

tangent and the pure rolling line coincides with, or is just slightly to the

outside of, the track centerline. As the degree curve increases, the pure

rolling line moves farther to the outside of the track centerline and the

leading wheelset attempts to follow it by displacing laterally until it

reaches the flange clearance. The condition of two point tread-flange contact

occurs at the outer wheel, with forces at the tread patch dominating. With

still tighter curves, the leading wheelset lateral excursion remains fixed

at the flange clearance, as the pure rolling line moves further out. At the

outer wheel the forces decrease at the tread contact patch and grow larger at

the flange patch. The creep forces which develop at the flange contact

patch increase, due to the substantial creepages, until they saturate at

the adhesion limit. The fact that the creep forces saturate for increased

curvature is the reason that the work at the flanging wheel reaches a

constant at the lowest k for the tight 20° curve in Figure 4.5.

The behavior of the trailing wheelset is also a function of the k and

curvature. In general, the trailing wheelset displaces laterally inward and

the angle of attack decreases slightly with increasing k as the truck

becomes stiffer and the wheelsets and truck assume a more rigid configuration.

This is shown schematically in Figure 4.6. For a tight curve, the trailing
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wheelset moves from flange contact at the outer wheel for a truck with very

soft k to flange contact at the inner wheel for a rigid truck with verv
px 7

stiff k . Thus, two-point contact occurs at the leading and trailing wheels
px

of a truck with very low k negotiating a high degree curve, whereas for a
px

truck with very soft k^
x

the outer wheel of the leading wheelset and the

inner wheel of the trailing wheelset are in two-point contact. For a shallow

curve, the trailing wheelset of a truck with very soft k does not disDlace
px

to flange clearance at the outer wheel, and displaces inward only slightly

as the truck becomes more rigid. Thus, single-point contact occurs at all

wheels of a truck with very low k traversing a shallow curve, and two
px

point contact develops at the lead outer wheel of a stiff truck.

The leading wheelset angle of attack of a conventional truck with new

wheels as a function of primary longitudinal stiffness and curvature is plotted

in Figure 4.7. It is very similar to the graph of flanging wheel work shown

in Figure 4.5. The angle of attack of the leading wheelset increases as k

is increased for shallow and moderate degree curves (2.5°, 5° and 10°),

whereas it increases sharply and then approaches a constant with increasing

k for the sharp 20° curve. At very low values of k , the truck has wheel-
px r y px

sets which are essentially "free” to adopt angles of attack independent of

the truck yaw. The predominate creep forces which act on the wheelsets of a

truck with soft k are the lateral creep forces which occur for equilibrium
px

with the lateral forces from the primary lateral suspension and normal loads.

These lateral creep forces are a function of the angle of attack. For positive

angles of attack, positive lateral creep forces develop which push the wheelset

toward the outer rail, whereas for negative angles of attack negative lateral

creep forces occur which restrain the wheelset from displacing out. A
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conventional truck with soft k traversing moderate and high degree curves
px

(5°, 10°, and 20° curves) has a positive leading wheeiset angle of attack

and thus develops positive lateral creep forces, which are needed for

equilibrium. A truck with soft k negotiating a shallow curve (2.5° curve)
px

develops a slightly negative angle of attack, needed to generate lateral

creep forces in the opposite direction to balance the lateral components of

primary suspension and normal forces. At high values of k , the wheelsets

are almost rigidly coupled to the truck and follow it in yaw due to the high

yaw bending stiffness. Longitudinal creep forces develop which create

wheeiset yaw moments to help balance the large yaw bending moment from k .

As k is increased still further, larger longitudinal creep forces develop
px

until the resultant creep force at each contact patch saturates at the

adhesion limit. Eventually, the wheeiset- truck configuration becomes fully-

rigid and the wheeiset angles of attack approach a constant.

A suspension yaw moment acts on the leading wheeiset due to k and is

balanced predominantly by a yaw moment provided by the longitudinal creep

forces. As mentioned, for a truck with soft k the longitudinal creep

forces are small (in comparison to the lateral creep forces which are large)

corresponding to a small wheeiset yaw moment. Large longitudinal creep

forces and thus a large wheeiset yaw moment occur for a truck with very stiff

k negotiating shallow curves. As this almost rigid truck negotiates
px

tighter curves, severe flanging at the outer wheel of the leading wheeiset

occurs and the creep forces at the flange contact patch saturate. Larger lateral

creep forces are needed for equilibrium (to balance the larger lateral

normal forces) and thus the angle of attack becomes larger. As a result of

the creep force saturation and the requirement for larger lateral creep
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forces, smaller longitudinal creep forces are available and thus the

wheelset yaw moment decreases. This information is summarized in Figure 4.8

which shows the effect of primary longitudinal stiffness and curvature on the

leading wheelset angle of attack and leading wheelset yaw moment of a

conventional truck with new wheels. The leading wheelset of a truck with

soft k negotiating shallow curves develops small negative angles of attack
px

which correspond with negative lateral creep forces needed for equilibrium.

The effect of primary longitudinal stiffness and curvature on the

leading outer wheel lateral force of a conventional truck with new wheels

is shown in Figure 4.9. This lateral force is the sum of the lateral

components of the creep and normal forces which act at the contact patches

of the flanging wheel. As with the work and angle of attack versus stiffness

functions (Figures 4.5 and 4.7, respectively), the lateral force (1) increases

and then approaches a constant as k^
x

is increased, and (2) increases as

tighter curves are negotiated. At high values of k , the creep forces

saturate at the adhesion limit and the normal forces approach a constant

since the truck assumes a rigid configuration. The lead outer wheel lateral

force remains constant with further increases in k
px

Lateral equilibrium of the wheelsets represents a balance of lateral

normal forces, lateral creep forces, and forces from the primary lateral

suspension. The latter suspension forces are determined by the primary

lateral stiffness and the relative wheelset-truck lateral strokes. These

strokes are influenced by the secondary suspension yaw moments exerted on

the trucks by the carbody. The moments are normally similar in magnitude,

but opposite in directions on the two trucks as shown in Figure 4.10. A

positive moment acts on the front truck, which hinders curving by turning the
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Figure 4.9 Leading Outer Wheel Lateral Force vs. Primary

Longitudinal Stiffness of a Conventional Truck

with New Wheels Negotiating 2.5°, 5°, 10 , and
20° Curves.
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Figure 4.10 Direction of Secondary Yaw Moment on Front

and Rear Trucks During Curve Negotiation.
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truck toward the outside rail, while a negative moment acts on the rear truck,

which tends to help curving by steering the truck toward the inside rail.

(If secondary yaw breakaway has already occurred, however, the above moments

change direction in the curve exit spiral. In the present study, this

reversal is not considered.) In summary, the primary lateral suspension

force included in the lateral force equilibrium of a wheelset depends upon

the yaw moment from the secondary suspension. The secondary suspension yaw

moment acting on the front truck degrades curving performance by pushing

the outer wheel of the leading wheelset of the front truck into the flange

(assuming a moderate or stiff value of primary lateral stiffness, k ). This

leading outer wheel experiences the most severe flanging of all the wheels of

the full vehicle. The effect of secondary yaw breakaway torque on the work at

the leading outer wheel will be discussed later.

The effect of primary lateral stiffness, k , on the work at the

flanging wheel of a baseline conventional truck with new wheels negotiating a

10° curve is shown in Figure 4.11. As k is increased from low values, thes
py

work decreases slightly (about 10%) and then asymptotically reaches a

constant. At low values of k , the wheelsets are loosely restrained laterally
py

relative to the truck frame. The leading wheelset displaces laterally until

the flange clearance, and two-point wheel/rail contact occurs at the outer

wheel. As k is increased, the lateral displacement of the wheelsets
py

becomes more coupled to the truck position and eventually a laterally rigid

configuration is approached. The leading wheelset is still fixed at the

flange clearance and two-point contact occurs at the outer wheel. However,

the laterally stiffer truck somewhat restrains the wheelset and thus smaller

creep forces and work develop.
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Figure 4.11 Work at Flanging Wheel vs. Primary Lateral Stiffness
of a Conventional Truck with New Wheels Negotiating
a 10° Curve.
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Figures 4.12 and 4.13 show the influence of the two curving inputs,

curvature and cant deficiency, respectively, on the work at the flanging

wheel of a baseline conventional truck with new wheels. In Figure 4.12,

the degree curve is varied from 0° for tangent track to 20° representing a

tight curve of radius 290 ft. For small degree curves (less than 2.5°), the

leading wheelset lateral excursion is less than flange clearance and thus

single point contact occurs at all wheels. Small amounts of work (less than

1 ft-lb/ft) are expended at the flanging wheel. As the truck (in balanced

running) negotiates tighter curves (2.5° and greater), the leading wheelset

is fixed at the flange clearance and two point contact occurs at the outer

wheel. Significant increases in work occur; at 5°, 10°, and 20° the work is

39 ft-lb/ft, 90 ft-lb/ft, and 149 ft-lb/ft, respectively. The majority of

transit curves are less than 7.5°, although some systems have curves as high

as 20°. Yard curves are typically greater than 7.5°, and most often

restraining rails are present. In this study, the behavior of trucks (at

balanced running) negotiating 2.5°, 5°, 10° and 20° curves is investigated.

In Figure 4.13 the work at the flanging wheel of a baseline conventional

truck with new wheels negotiating a 10° curve is shown as the cant

deficiency is varied from <f>^
= 0 for balanced running to a lateral unbalance

of 0.1 g's. The curving performance is slightly degraded with increasing

cant deficiency. Larger forces develop at the flange contact patch to

counteract the increased lateral force on the wheelset and, as a result, the

work at the flanging wheel increases. Wheel lift at the inner wheel occurs

when cant deficiency is large, for instance $ > 0.5 g corresDonding to

V > 75 ft/sec negotiating a 20° curve with a superelevation of 6 inches. Cant
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deficiency is the less important of the two curving inputs, especially within

the range of the Federal Railway Administration limit of (p
< 0.05 g's [30].

' d

In this report, all curving performance studies are performed for trucks at

balanced running, i.e., = 0.

Figure 4.14 illustrates the effect of secondary yaw breakaway torque

on the curving performance of a baseline conventional truck operating on a

10° curve. As the breakaway torque increases, the work at the leading outer

wheel of the front truck increases and the work at the leading outer wheel

of the rear truck decreases. This is consistent with the predicted behavior

when considering the directions of the yaw breakaway torques on the two

trucks, shown in Figure 4.10. On the front truck, the torque acts to steer

the truck toward the outer rail. (The lateral and longitudinal creep forces

acting on the wheelset also turn the truck toward the outer rail.) This

creates larger forces at the leading outer wheel as well as a larger leading

wheelset angle of attack, both of which increase the work. On the rear truck,

the torque acts in the opposite direction and relieves the forces at the

leading outer wheel and the work decreases. In this report, the baseline

value of breakaway torque is 7500 ft-lb and the work at the flanging wheel of

the front truck is the principal curving performance index. Furthermore, it

is assumed that secondary yaw breakaway has occured, which is true for trucks

negotiating curves greater than 1 degree.

Figure 4.15 shows the work at the flanging wheel of a baseline

conventional truck negotiating a 10° curve as the creep coefficients are

varied from zero to 100 percent of the values predicted by Kalker's Linear
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theory of creep [31]. With zero creep coefficients, no creep forces develop and

thus the work is zero. With increasing fractions of full Kalker coefficients,

the creep forces grow until saturation occurs. Creep forces at the flange

contact patch are fully saturated for fractions greater than about one-eighth.

The work is constant for further increases in creep coefficients. The fact

that the curving performance is insensitive to creep coefficients over a wide

range suggests that the use of more sophisticated creep force models would

probably not change the conclusions of the curving analysis.

The influence of the coefficient of friction on the work at the

flanging wheel for the same truck is shown in Figure 4.16. Creep forces

are saturated and performance is virtually linear with the friction

coefficient for y < 0.4. The magnitude of the creep force is dictated by

the coefficient of friction. For higher coefficients of friction, y > 0.4,

severe flanging occurs leading to wheel climb and eventually derailment

may occur. Field experiments show that the coefficient of friction between

wheel and rail varies over a wide range, from y = 0.1 for wet surfaces

to y = 0.6 for very clean dry surfaces [13]. A baseline value of 0.3 is

used in this report

.

The influence of axle drive torque on the work at the flanging wheel of

a baseline conventional truck with new wheels negotiating a 10° curve is

shown in Figure 4.17. The work increases slightly with drive torque due to

increased longitudinal creepage and grows raDidly as the wheel/rail friction

limit is approached for which significant creepage occurs. Typical transit

vehicles have small drive torques which correspond to the portion of the graph

with slightly increasing work. Thus, drive torque has little influence on

curving performance.
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The curving studies assume that the rail and rail bed are rigid. In

actuality, the rails are not rigid but deflect laterally with lateral

loading. A simple model for lateral rail flexibility is discussed in

Appendix F. The effects of lateral rail flexibility on the curving

performance of a conventional truck with k = 5.0 x 10^ lb/ft and newK px

wheels negotiating a 10° curve are listed in Table 4.1. With flexibility,

the high rail deflects out resulting in an increased leading wheelset

lateral excursion. However, the geometry of the truck, the wheel/rail

forces, and the wheel/rail work are practically insensitive to rail

flexibility. Thus, in this report the results of the curving studies in

terms of flanging wheel work are meaningful even though they assume rigid

rails

.

The curving behavior of a conventional truck with Heumann wheels on

worn rails is shown in Figure 4.18, where the effect of k on the work at
px

the flanging wheel is plotted for 2.5°, 5°, 10° and 20° curves. For all

degree curves, the flanging wheel work increases and eventually reaches a

constant as k is stiffened. Figure 4.18 is similar to Figure 4.5, the

graph of flanging wheel work of a conventional truck with new wheels. For

very low values of k , the wheelsets are loosely restrained in yaw and the

dominant frictional forces are the lateral creep forces. The flanging wheel

work is small:’ less than 5 ft-lb/ft for 2.5°, 5° and 10° curves, and less

than 50 ft-lb/ft for the tight 20° curve. At very high values of k , the
px

wheelsets are locked to the truck frame in yaw. Longitudinal creep forces
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Table 4.1 Effects of Rail Flexibility on the Steady-State Curving

of a Conventional Truck with New Wheels Negotiating a

10° Curve

k = 5.0 x 105 lb/ft
px

Rigid Rail

(k ri =1.0xl0
10

lb/ft)
flex

Flexible Rail

(k £1 =5.0x10 lb/ft)
flex

Lead Wheelset Lateral

Displacement, y ^
(in) 0.3210* 0.3357

Lead Wheelset Angle of

Attack, (deg) 0.6000 0.5993

Trailing Wheelset Lateral

Displacement, y^ (in) -0.0922 -0.0763

Trailing Wheelset Angle of

Attack (deg) 0.1028 0.1012

Lead Left Rail Lateral

Displacement (in) 0.0000 0.0147

Lead Right Rail Lateral

Displacement (in) 0.0000 -0.0011

Lead Left Wheel Lateral
Force (lb) -6140. -6135.

Lead Right Wheel Lateral
Force (lb) 3998. 3999.

Work at Lead Left Wheel
(ft-lb/ft) 130. 130.

Total Work = Work at all

Wheels (ft-lb/ft) 196. 195.

X
Flange Clearance
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are present which provide a wheelset yaw moment to counteract the large

suspension bending stiffness due to the stiff k . Eventually the creep

forces saturate at the adhesion limit and the work becomes constant. Creep

force saturation occurs at the lowest k
^

for tight curves due to the large

lateral creep forces which develop for equilibrium with large lateral

components of normal forces. As a result, the work approaches a constant

level for the 20° curve at the lowest k in Figure 4.18. For a conventional
px

truck with Heumann wheels the baseline value of k is 6.50 x 10^ lb /ft,
px

which gives a critical speed of 120 mph

.

The choice of wheel profile strongly influences the curving behavior

of a conventional truck in terms of the magnitude of the flanging wheel work.

Table 4.2 shows that at all degree curves substantially less work is

expended for a conventional truck with Heumann wheels than a truck with new

wheels, for trucks of identical stiffness. This is due to the fact that the

Heumann wheel profile maintains single-point wheel/rail contact at all

lateral excursions, and that a larger restoring moment is available to help

align the wheelsets radially leading to improved curving performance. The

advantage of employing Heumann wheels is greatest at low degree curves. More

than a four-fold decrease in flanging wheel work is obtained at 2.5° (33 ft-

lb/ft for new wheels versus 8 ft-lb/ft for Heumann wheels), whereas less than

a two-fold decrease is obtained at 20° (206 ft-lb/ft versus 130 ft-lb/ft).

This agrees with the results of the single wheelset model which shows that

the differences in curving behavior decrease with increasing curvature due

to the earlier onset of creep force saturation.
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Table 4.2 The Effect of New and Heumann Wheel/Rail Profiles on the
Work at the Flanging Wheel of a Conventional Truck With
k = 5.0 x 10^ lb/ft Negotiating 2.5°, 5°, 10°, and 20°

cBrves

Work at Flanging
—^Theel (ft-lb/ft)

Wheel/Rail Profile'"'"^

—

Degree Curve

O

2.5
O

5

O

10

O

20

New 33 80 130 206

Heumann 8 24 62 130

4 . 3 Curving Performance of Self -Steered Radial Trucks

The curving performance of a self-steered radial truck is determined

primarily by the primary longitudinal stiffness, k , the interaxle

bending stiffness, and the wheel/rail profile geometry. The value of the

primary longitudinal stiffness is associated with the ability of the wheel-

sets to align radially. For soft k^, the yaw of the wheelsets is almost

decoupled from the yaw of the truck. For stiff k , the wheelsets and the
px

truck frame are almost locked into a rigid configuration in yaw which

prevents the wheelsets from independently adopting radial orientations.

The interaxle bending stiffness, k^ 0 , provides direct communication between

the wheelsets. Steering action results when the value of k^ is l°w and

the value of the interaxle shear stiffness, k is high. A yaw motion of

one wheelset causes the other wheelset to yaw in the opposite direction, thus

allowing the wheelsets to align radially in curves. The stiff shear spring

can increase the total truck shear stiffness of the self-steered truck above

the value achievable by a conventional truck, thus opening the possibility

for improved curving (and stability) performance. As before, the wheel/rail
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profile geometry is important since it dictates the character of the wheel/

rail contact by determining whether or not two point contact occurs at the

flanging wheel.

The effect of increasing the primary longitudinal stiffness, k , of a
px

self- steered radial truck with new wheels on worn rails is to degrade the

curving performance. Figure 4.19 shows the work at the flanging wheel of a

self steered radial truck with a low interaxle bending stiffness, k
b2

1.0 x 10 ft-lb/rad, and a high interaxle shear stiffness, k _ = 1.0 x 10^
sz

o o o o

lb/ft, as a function of k as the truck negotiates 2.5 , 5 , 10 , and 20
px

curves. In all cases, the flanging wheel work rises with increasing k
^

and

then asymptotically approaches a constant value. The effect of k on the
px

work is similar to that observed for the conventional truck. However, with

the self-steered radial truck some steering action is provided due to the

interaxle stiffnesses helping to align the wheelsets radially especially

around tight curves. The higher total truck shear stiffness of the self-

steered radial truck is advantageous since it helps to minimize the angle of

attack and flange forces for negotiation around high degree curves. As a

result , lower magnitudes of work are expended for the self-steered radial

truck negotiating the tight 20° curve (Fig. 4.19) in comparison to the

conventional truck (Fig. 4.5). For the shallow and moderate degree curves,

insignificant differences in flanging wheel work occur for the conventional

and self-steered radial trucks especially at high k . For negotiation of
px

low degree curves, the conventional truck with lew total truck shear stiff-

ness is desirable since it helps to minimize the wheelset lateral excursion

and angle of attack. In contrast, the high total truck shear stiffness of the

self-steered radial truck keeps the wheelset at flange clearance, and can
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result in more work at the outer wheel, as will be discussed later.

A self-steered radial truck with Heumann wheels on worn rails demonstrates

the same characteristic behavior of inferior curving performance with

increased k
^

as shown in Figure 4.20. Lower levels of work are expended

at the same stiffness for all degree curves in comparison to the work for a

self-steered radial truck with new wheels, shown in Figure 4.19. Results are

summarized in Table 4.3 for a stiffness of k = 5.0 x 10~> lb/ft. The single-
px °

point contact nature of the Heumann wheel profile is responsible for the

improvement in curving performance. As before with the conventional truck,

the advantage of employing Heumann wheels in comparison to new wheels

decreases with tighter curves. For a shallow 2.5° curve, the work is

14 ft-lb/ft for Heumann wheels versus 34 ft-lb/ft for new wheels. For a

tight 20° curve, the work is 122 ft-lb/ft for the Heumann wheels versus 194

ft-lb/ft for new wheels. The decrease in relative advantage of the truck

with Heumann wheels as curvature is increased is due to creep forces which

saturate earlier. The trucks with new and Heumann wheels, compared in Table

4.3 have the same stiffness but different stability properties. To obtain

identical critical speeds the truck with Heumann wheels must be made stiffer

than the truck with new wheels to offset the destabilizing effect of the

higher conicity Heumann profile. The baseline value of k for a self-steered

radial truck with new wheels is 1.20 x 10 lb/ft, and for a truck with He

wheels is 5.00 x 10^ lb/ft. The baseline interaxle stiffnesses are:

3 6
k
^2

= 1-0 x 10 ft-lb/rad and k ^
= 1.0 x 10 lb/ft. These values were

selected to yield critical speeds of 120 mph

.

umann
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Figure 4.20 Work at Flanging Wheel vs. Primary Longitudinal
Stiffness of a Self-Steered Radial Truck with
Heumann Wheels Negotiating 2.5°, 5°, 10°, and
20° Curves.
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Table 4.3 The Effect of New and Heumann Wheel/Rail Profiles on the Work
at the Flanging Wheel of a Self-Steered Radial Truck Negotiating
2.5°, 5°, 10°, and 20° Curves with Stiffnesses:

k = 5.0 x 105 lb/ft, K 0 = 1-0 x 103 ft-lb/rad, k _ = 1.0 x 106 lb/ftpx DZ SZ

Work at Flanging^ ^Wheel (ft-lb/ft) Degree Curve

Wheel/Rail Profile^'''\^^ 2.5° 5° i

—

1

o
o 20°

New 34 81 131 194

Heumann 14 29 61 122

The self-steered radial truck of Table 4.3 is obtained by adding inter-

axle stiffnesses to the conventional truck of Table 4.2. The resulting radial

truck has a higher total shear stiffness (and a slightly higher bending stiff-

ness) which is intended to improve the curving performance. The higher shear

stiffness of the radial truck makes it slightly better for negotiating

high degree curves since it helps to minimize the leading wheelset angle of

attack and lateral forces during flanging. For example, by adding interwheel-

set stiffnesses the work decreases from 206 to 194 ft-lb/ft for trucks with

new wheels and from 130 to 122 ft-lb/ft for trucks with Heumann wheels

negotiating 20° curves. However, the added shear stiffness can actually

degrade the performance for negotiation of low degree curves by forcing the

leading wheelset into the flange and creating an increased angle of attack.

For instance, when converting to the self-steered radial configuration for 2.5°

curve negotiation the work remains essentially constant increasing from 33

to 34 ft-lb/ft for trucks with new wheels, while it increases from 8 to 14

ft-lb/ft for trucks with Heumann wheels. The results indicate that the

4-42



curving performance of conventional and self-steered radial trucks with new

wheels are essentially identical for low and moderate degree curves. In

contrast, the performance of the self-steered radial truck is worse than that

of the conventional truck at low and moderate degree curves x^hen the trucks

employ Heumann wheels. The leading wheelsets of the trucks with new wheels

are at flange clearance, and two-point contact occurs at the leading outer

wheels. The added shear stiffness of the radial truck changes only slightly

the distribution and magnitude of forces at the two contact patches of the

flanging wheel and as a result the work remains essentially constant at low

degree curves. On the other hand, the leading wheelsets of the trucks with

the single-point contact Heumann wheels are not fixed at the flange clearance.

The lower truck shear stiffness of the conventional truck minimizes the

leading wheelset lateral excursion and angle of attack, and thus the work

at the flanging wheel is less for the conventional truck than for the self-

steered radial truck.

4 . 4 Curving Performance of Forced-Steered Radial Trucks

Vehicles with f orced-steered radial trucks employ passive linkages

between the wheelsets and carbody to sense track curvature and/or cant

deficiency, and use this information to steer the wheelsets into radial

alignment. The curving performance of these vehicles is a function of the

primary longitudinal stiffness, the effective interaxle bending stiffness

(due to forced -steered linkages), the steering action gain(s), and the wheel/

rail profile geometry. In the studies described below an L-type forced-steered

radial truck has been used with the curvature steering action gain set to the

pure rolling line gain, G n . This is the appropriate gain required for the
prx,

wheelsets to track the pure rolling line and achieve radial alignment, based
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upon kinematic arguments which assume rigid steering linkages. Due to

nonrigid linkages and the action of flange forces, however, the pure rolling

line gain may result in imperfect steering of the wheelsets as discussed

later in this section.

The curving properties of a forced~steered truck are not unique since

different combinations of primary longitudinal stiffness, k , and effective
px

interaxle bending stiffness, can yield the same behavior. As such, two

4
forced- steered truck designs, FSR I, with a low value of k (k = 7.0 x 10

px px
3

Ib/ft) and FSR II, with a very low value of k (k = 1.0 x 10 lb/ft) are
px px

investigated

.

Figures 4.21 and 4.22 show the flanging wheel work as a function of k^

for the two forced-s teered truck designs, FSR I and FSR II, with new wheels on

worn rails. The curving performance is relatively insensitive to changes in

k^
?

for negotiation of low degree curves (2.5° for FSR I; 2.5° and 5° for

FSR II). For forced-steered trucks with low values of k^ negotiating shallow

curves, the wheelsets maintain almost radial orientations due to longitudinal

creep forces which support the small yaw bending moment from the soft primary

longitudinal suspensions, and self-steered behavior is approached. With

stiffer values of k^* the wheelsets become more restrained in yaw and the

forced steering action is used to achieve radial alignment and overcome the

stiffer truck. For negotiation of higher degree curves, the flanging wheel

work rises slightly with increasing k^ 0 . This is due to the fact that the

pure rolling line steering gain, which was selected to kinematically align

both wheelsets radially, actually results in a slight understeer of the

leading wheelset for higher degree curves as is discussed later. With

increasing k^* t ^ e lading wheelset adopts a slightly increasing positive

angle of attack due to insufficient steering action which is the reason for
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Figure 4.22 Work at Flanging Wheel vs. Interaxle Bending
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FSR II, with New Wheels Negotiating 2.5°, 5°,
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the slight increase in flanging wheel work.

The slight increase in work which occurs with increasing k^ is minimized

by the effects of forced steering. In Figure 4.23 the flanging wheel work

of a f orced-steered radial truck (FSF. I) with new wheels
' negotiating a 10°

curve, reproduced from Figure 4.21, is compared to the work associated with a

truck with no forced -steering (G = 0) , i.e., a self-steered radial truck.

As k^ 0 is increased, the creep forces are not sufficient to steer the wheelsets

of the self-steered truck causing the lead wheelset angle of attack and thus

the flanging wheel work to rise. Eventually, as the wheelsets become rigidly

connected the creep forces at the flanging wheel saturate and the work

asymptotically reaches a constant. The work increases over 300% in the

transition from very soft to very stiff interaxle bending stiffness. In

comparison, in the f orced-steered truck (with new wheels), the angle of attack

remains relatively constant, increasing only slightly with increasing k^,

giving rise to a 35% increase in the flanging wheel work. A high value of k^ 0

is desirable to ensure maximum use of the forced-steering action. Furthermore,

Figure 4.23 demonstrates the importance of designing a self-steered radial

truck with a low value of k^ t0 permit the wheelsets to yaw due to action of

the longitudinal creep forces.

A comparison of Figures 4.21 and 4.22 shows that the work for the first

design forced-steered truck, FSR I is greater than the work for the second

design truck, FSR II, at all degree curves. The FSR I truck has a larger

k , and thus a larger yaw bending stiffness, than the FSR II truck. The

forced-steering action must overcome this additional bending resistance in

the FSR I truck and, as a result, the FSR I truck does not steer the wheelsets

as successfully and the flanging wheel work is greater.

The effect of increasing k^
?

on the flanging wheel work for the two forced-

steered truck designs with Heumann wheels on worn rails is shown in Figures 4.24
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and 4.25 From Figure 4.24 as the FSR I truck negotiates shallow curves,

the work increases slightly with increasing k^ but always is small (less than

2 ft-lb/ft for 2.5° and less than 3 ft-lb/ft for 5°). For the tighter 10° and

20° curves, the work decreases slightly with increasing k^. For the 20° curve,

the outer wheel of the trailing wheelset experiences more work than the outer

wheel of the leading wheelset, and thus the work at the trailing outer wheel

is reported. For the second design truck, FSR II, shown in Figure 4.25 the

work is essentially insensitive to changes in k^ , showing a very slight

decrease with increasing stiffness. The work associated with negotiation of

the 2.5°, 5° and 10° curves is very small, less than 2.5 ft-lb/ft. Again,

the data reported for the 20° curve is the work at the trailing outer wheel

since it exceeded the work at the other wheels.

The decrease in work with increasing k^ occurs for forced-steered trucks

with Heumann wheels due to effective steering of the wheelsets. As k^
9
becomes

stiffer, the steering linkages become more rigid and "force" the wheelsets into

radial alignment. For the Heumann wheel the pure rolling line steering gain

results in almost perfect steering, showing slight understeering for high

degree curves.

The values of stiffnesses for baseline forced -steered truck designs with

critical speeds of 120 mph were listed in Table 3.2, and are marked in Figures

4.21, 4.22, 4.24, and 4.25. The curving performances of the two forced-steered

truck designs with new and Heumann wheels and identical interaxle stiffnesses

are summarized in Tables 4.4 and 4.5 for FSR I and FSR II, respectively. In

both tables, the results for the Heumann wheel profile demonstrate the improve-

ment in curving performance in comparison to the new wheel profile. The

single -point contact Heumann profile develops less work and, has been shown.
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Effective Interaxle Bending Stiffness, (ft-lb/rad)

Figure 4.24 Work at Flanging Wheel vs. Interaxle
Bending Stiffness of a Forced-Steered
Radial Truck, FSR I, with Heumann Wheels
Negotiating 2.5°, 5°, 10°, and 20° Curves.
*

( Work at Trailing Outer Wheel)
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Figure 4.25 Work at Flanging Wheel vs. Interaxle Bending
Stiffness of a Forced-Steered Radial Truck,
FSR II, with Heumann Wheels Negotiating 2.5°,
5°, 10°, and 20° Curves (*Work at Trailing
Outer Wheel)
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Table 4.4 The Effect of New and Heumann Wheel/Rail Profiles
On the Work at the Flanging Wheel of a Forced-Steered
Radial Truck, FSR I, Negotiating 2.5°, 5°, 10°, and
20° Curves with Stiffnesses:

k = 7.0 x 10^ lb/ft, 1c = 1.0 x 10
6

ft-lb/rad, k 0 = 1.0 x 10^ lb/ft
px d 2 s2

Work at Flanging
' ^Wheel (ft-lb/ft)

Wheel/Rail Profile

—

Degree Curve

2.5° 5° 10° 20°

New 1 18 60 93

Heumann 1 2 7 19

Table 4.5 The Effect of New and Heumann Wheel/Rail Profiles On

the Work at the Flanging Wheel of a Forced-Steered
Radial Truck, FSR II, Negotiating 2.5°, 5°, 10°, and
20° Curves with Stiffnesses:

k = 1.0 x 10
3
lb/ft, k, 0 = 1.0 x 10

6
ft-lb/rad, k 0 = 1.0 x 10

6
lb/ft

px d2 s2

Work at Flanging
Wheel (ft-lb/ft)

Degree Curve

Wheel/Rail Profile 2.5° 5° O
OrH 20°

New 1 2 33 72

Heumann 1 2 3 16



is advantageous for curving. Since identical and k were selected , Tables

4.4 and 4.5 can be used to compare the two truck designs with the same wheel

profile. With both the new and Heumann wheel profiles, less work occurs for

the FSR II design, with the lower k , than for the FSR I design. With new
px

wheels, the work to negotiate a 10° curve is 60 ft-lb/ft for the FSR I design

versus 33 ft-lb/ft for the FSR II design, whereas with Heumann wheels, the

work is 7 ft-lb/ft for the FSR I design versus 3 ft-lb/ft for the FSR I design.

The FSR II design has minimal wheelset yaw bending resistance due to the very

low primary stiffness, and the forced-steering action can better align the

wheelsets radially.

For a f orced-steered truck with a stiff k^ > the value of steering gain

determines the leading wheelset angle of attack, and thus strongly influences

the work at the flanging wheel. The curvature steering gain used in this

report is the gain which kinematically aligns the wheelsets radially, called

the pure rolling line steering gain, G derived in Appendix B. It positions

the wheelsets radially assuming that no primary longitudinal and secondary yaw

stiffnesses exist and no flange forces are present. These assumptions are

violated for forced-steered trucks, and thus the pure rolling line steering

gain may result in yaw misalignment of the wheelsets.

Figures 4.26 and 4.27 show the effect of steering gain on the flanging

wheel work and the leading wheelset angle of attack, respectively, of a forced

steered radial truck, FSR I, with stiff k^ 0 negotiating a 20° curve with both

new and Heumann wheel profiles. At G = 0 the behavior of a forced-steered

truck is similar to that of a self-steered truck with a high value of stiffness

k
^2

since no forced-steering action is involved. With increasing steering gain,

the flanging wheel work decreases as the wheelsets are forced toward radial
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Work

at

Flanging

Wheel

(ft-lb/ft)

Figure 4.26 Work at Flanging Wheel vs. Curvature Steering
Gain for a Forced-Steered Radial Truck, FSR I,

with New and Heumann Wheels Negotiating a 20°

Curve. ,

(k = 7.0 x 10 lb/ft, k, „ = 1.0 x 10 ft-lb/sec,
px

6
k = 1.0 x 10 lb/ft)
s2

4-54



Leading

Wheelset

Angle

of

Attack

(deg)

Curvature Steering Gain, G

Figure 4.27 Leading Wheelset Angle of Attack vs.

Curvature Steering Gain for a Forced-
Steering Radial Truck, FSR I, with New
and Heumann Wheels Negotiating a 20° Curve.
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alignment. At a certain gain, perfect steering is achieved and minimum work

occurs. Further increases in steering gain result in oversteering of the

wheelsets away from radial alignment and the flanging wheel work increases.

For the truck with Heumann wheels, the steering gain associated with perfect

radial alignment is slightly higher than the pure rolling line gain

(G
^

= 0.1579). For the truck with new wheels, a steering gain larger than

G = 0.20, the maximum value plotted in Figures 4.26 and 4.27, is required to

achieve perfect steering.

At the pure rolling line steering gain, G a larger angle of attack

occurs for the truck with new wheels than for the truck with Heumann wheels.

Thus, the gain G
^

results in substantial understeering of the leading wheel-

set of the truck with new wheels in comparison to the leading wheelset of the

truck with Heumann wheels. To eliminate wheelset misalignment, the steering

gains of both trucks must be increased, slightly for the truck with Heumann

wheels and significantly for the truck with new wheels. The results shown in

Figures 4.26 and 4.27 are for negotiation of a 20° curve, for which the

flanging forces are high. For forced-steered trucks negotiating smaller

degree curves, the pure rolling line steering gain results in improved steering,

i.e., decreased understeering.

The flanging wheel work of the forced-steered trucks with new wheels and

steering gain G shown in Figures 4.21 and 4.22, increases with stiffer

k^
?
because the leading wheelset is being forced to adopt a positive yaw

misalignment. A larger gain is needed to eliminate the understeering, and

would give improved curving performance with increasing k^- Too large a

steering gain would result in oversteering, which would also be detrimental

to the curving performance. The selection of an optimal steering gain for a
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forced-steered truck is not addressed in this study, but represents an

important area of future research.

Forcea-steered trucks adjust their geometry with track curvature to

align their wheelsets in nominally radial positions. Because of the reduced

wheelset misalignment in curves, the work expended at the flanging wheel

decreases. In comparison to the performance of conventional and self-steered

radial trucks, a significant improvement is achieved with forced steering of

wheelsets, as is discussed in Chapter 5.

4 . 5 Effect of Wheelset Misalignment on Curving Performance

Wheelset misalignments may occur in transit trucks during construction or

as a result of operation and maintenance practice. Misalignments position the

wheelsets in offset or skewed initial positions and influence truck performance.

In general, they hinder the tracking performance and contribute to asymmetric

wear patterns on wheels.

Wheelset misalignments can be resolved into radial and lateral components.

In radial misalignments, the wheelsets have equal and opposite yaw angles with

respect to the truck centerline, whereas in lateral misalignment the wheelsets

are offset laterally with respect to one another. Previous analyses [2, 13]

have indicated that the radial component of misalignment has the more detrimental

influence on the curving behavior. The results of this study confirm that

radial misalignment has a significant effect on curved as well as tangent

track negotiation.

The effect of wheelset misalignments on truck curving performance is a

function of both the magnitude and direction of the radial and lateral mis-

alignment components. The ability of a truck to negotiate a curve is improved

by misalignments which position the wheelsets radially with the curve, and is
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hindered by misalignments in the opposite direction. Curving performance is

degraded by misalignments for a vehicle which negotiates an equal number of

right and left handed curves. In addition to direction, the magnitudes of the

wheelset misalignment influence truck tracking ability. In the misalignment

studies that follow, magnitudes of both lateral and radial misalignments are

used which are consistent with observed values [13]. For lateral misalignment,

the two wheelsets are each displaced 0.06 in (0.005 ft) in opposite directions

relative to the truck centerline, whereas for radial misalignment the two

wheelsets are each yawed 0.0573° (0.001 rad) in opposite directions from the

perpendicular to the truck centerline. The directions of the misalignments

are chosen to degrade the tracking performance.

The effects of wheelset misalignments on the work at the flanging wheel

and the wheel/rail lateral force at the flanging wheel are compared in Tables

4.6a and 4.6b, respectively, for conventional, self-steered, and forced-

steered radial trucks negotiating a 5° curve. Baseline and increased stiffness

truck suspension designs are considered. For the conventional truck, radial

misalignment has a stronger influence than the lateral misalignment, especially

for the stiffer suspension design. For instance, for the stiff conventional

truck with lateral misalignment, the flanging wheel work is 105 ft-lb/ft

versus 119 ft-lb/ft with radial misalignment. For the baseline self-steered

and forced-steered radial trucks the lateral component of misalignment

increases the work and lateral wheel/rail force at the flanging wheel more

than the radial component. The work at the flanging wheel of the baseline

self-steered truck is 50 ft-lb/ft with lateral misalignment and 34 ft-lb/ft

with radial misalignment. A reverse effect occurs for the self-steered and

forced-steered radial trucks of stiff suspension design. The radial component
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Table 4.6 Work at Flanging Wheel (a) and Wheel/Rail Force at Flanging

Wheel (b) vs. Misalignment Condition for Different Trucks

)perating on 5° Curve

3aseline Stiff

CONV k = 1.35 x 10
5

1.0 X 10
7

lb/ ft
px

k = 7.5 x 10
3

7.5 X o
O'

lb/ft
py

SSR k = 1.20 x 10
5

1.0 X 10
7

lb /ft
px

k = 7.5 x iO
3

7.5 X io
6

lb /ft
py

4 4
lb/ ftFSR k =7.0 x 10 7.0 X 10

px
_

^2
= 1.68 x 10

3
1.0 X 10

'

f t-lb/rad

^yJork at Flanging
Wheel
(ft-lb/ft)

Misalignment

Conventional
Self-

Steered
Radial

Forced-
Steered
Radial
(FSR I)

Condition
Baseline Stiff Baseline Stiff Baseline Stiff

No Misalignment 39 10 5 24 108 12 27

Lateral
Misalignment 47 105 50 117 45 36

Radial
Misalienment

49 119 34 123 20 59

(a)

Lateral Force
at Flanging

Wheel (lb) Conventional Self-
Steered
Radial

Fcrced-
Steered
Radial

(FSR I)

Misalignment \
Condition Baseline Stiff Baseline Stiff Basei ine Stiff

No Misalignment 2700 5065 2260 5190 1720 23"0

Lateral
Misalignment

2910 518G* 276u
ft

5340 2490 .650

Radial
Misalignment

3100 5 310 2660 5h 50 2090 35a0

(b)

Misalignment of Ooposite Sign
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of misalignment increases the work more than the lateral component. For the

stiff self-steered truck design, the work is 117 ft-lb/ft with lateral misalign-

ment and 123 ft-lb/ft with radial misalignment. For the stiff forced-steered

truck, the work is 36 ft-lb/ft with lateral misalignment and 59 ft-lb/ft with

radial misalignment. Thus, both radial and lateral misalignments increase the

work to negotiate a curve, with the influence of the radial component most

dominant on stiffer truck designs. However, lateral misalignment most signifi-

cantly increases the work of baseline self-steered and forced-steered radial

truck designs.

To improve their ability to negotiate curved track, radial truck designs

typically have increased total truck shear stiffness in comparison to the

limiting conventional truck value.

Due to the increased shear stiffness, the steady-state performance of

radial trucks on tangent track is influenced more strongly by wheelset

misalignments than the performance of conventional trucks. In Tables 4.7a

and 4.7b the effects of wheelset misalignments on the tangent track negotiation

of baseline conventional, self-steered, and forced-steered radial trucks are

summarized in terms of wheelset lateral excursion and wheel/rail lateral force

(at the leading axle, and leading outer wheel, respectively, except where

noted) . The results show that the radial component of misalignment has a more

significant effect than the lateral component for tangent track negotiation,

especially for the radial trucks. The self-steered and forced-steered radial

trucks have large lateral excursions of 0.310 and 0.308 in, respectively,

which indicate near-flanging conditions at the leading outer wheels. The

high shear properties of the radial trucks result in the large excursions and

the increased wheel/rail lateral forces (1030 lb for both trucks) on tangent
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Table 4.7 Wheelset Lateral Excursion (a) and Wheel/Rail Force (b) vs.
Misalignment Condition for Baseline Trucks Operating on
Tangent Track

^N^WTieelset
Lateral
^^wExcurs ion

(in)

Misalignment
Condition

Conventional
Self-

Steered
Radial

Forced-
Steered
Radial

(FSR I)

No Misalignment -0.001 -0.006 -0.004

Lateral
Misalignment

-0.150* -0.100* -0.100*

Radial
Misalignment

0.229 0.310 0.308

5*f

Trailing Wheelset (a)

^Si^Wheel /Rail
Lateral

Force
(lb)

Misalignment
Condition

Conventional
Self-

Steered
Radial

Forced-
Steered
Radial
(FSR I)

No Misalignment 400 410 410

Lateral k k *

Misalignment
530 440 450

Radial
580

Misalignment 10 30 1030

k
Trailing Inner Wheel (b)
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track. Thus, self-steered and forced-steered radial truck performance on

tangent track is sensitive to wheelset misalignments which implies that

minimizing misalignments due to construction and tolerance errors in radial

trucks is an important design consideration.
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CHAPTER 5

STABILITY/CURVING PERFORMANCE TRADEOFF

5 . 1 Introduction

The ideal rail truck must simultaneously satisfy two design objectives:

(1) minimize wheel/rail forces and wheelset angles of attack during curving;

and (2) provide adequate vehicle stability to prevent the onset of hunting

during which large lateral accelerations result in large wheel/rail forces.

Studies have indicated the value of minimizing wheel/rail forces and wheelset

angles since large forces and radial misalignment lead to increased wheel/rail

wear resulting in wheel and track deterioration and noise, increase the

potential danger of derailment due to wheel climb, and raise fuel consumption

because of increased rolling resistance. The two design goals of improved

curve negotiation and stability performance are usually represented as a

tradeoff which is well documented [17, 25]. Designers of conventional rail

trucks have traditionally achieved more stable designs through the use of

stiff primary suspension elements. However, the resulting improvement in

stability performance is obtained at the expense of degraded curving ability,

which creates special problems on the tight curves associated with urban

transit applications.

In this study, the lateral stability is characterized by the linear

critical speed and the curving performance is represented by the work at

the flanging wheel. An increased critical speed implies a more stable

truck design, whereas a higher level of flanging wheel work indicates a

design with decreased curve negotiation capability.

Studies of the stability performances of conventional, self-steered radial.
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and two forced-steered radial truck designs have been presented in Chapter 3

and the results are summarized in Table 5.1 for trucks with new wheels and in

Table 5.2 for trucks with Heumann wheels. To obtain the same critical speed,

the suspensions of the trucks with Heumann wheels are stiffer than the

suspensions of the trucks with new wheels since for trucks of the same stiff-

ness the effect of the higher conicity Heumann wheel is to decrease the

critical speed. The stiffnesses of Tables 5.1 and 5.2 were used to determine

the location of the conventional and steered truck designs in the total truck

shear versus bending stiffness plane, shown in Figure 5.1 for trucks with new

wheels and in Figure 5.2 for trucks with Heumann wheels. To provide increased

critical speed, the self- and forced-steered trucks have increased total truck

bending stiffnesses while maintaining approximately the same total shear

stiffnesses. The conventional trucks increase both total bending and shear

Due to this limitation, the total shear stiffnesses of the self-steered and

forced-steered truck designs are significantly higher than the values

achievable by conventional trucks. The results of the parametric curving

studies were presented in Chapter 4 where the functional relationship of

truck suspension on flanging wheel work was established for the different

trucks with new and Heumann wheels.

In this chapter, the stab ility/curving characteristics are studied by

combining the stability and curving performance results. The results allow

identification of truck designs which minimize the inherent tradeoffs, and

suggest modifications in future designs. Tradeoff studies for the conventional.

stiffnesses, but are restricted to stiffness values below the k
s
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Table 5.1 Stiffnesses vs. Critical Speed for Four Truck Designs with New Wheels

CONV. SSR FSR I FSR II

Vcr
(mph)

k (lb/ft)
px

k (lb/ft)
px

(k
b2

=10
3
ft-lb/rad

k =10
6
lb/ft)

s2

k^
2

(ft-lb/rad)

(k =7.0xl0
4
lb/ft

px
k =10 lb/ft)
s2

k^2 (ft-lb/rad)

(k =1.0xl0
3
lb/ft

px
k =10 lb/ft)
s2

100 8.5 x 10
4

7.0 x 10
4

1.0 x 10
4

2.4 x 10
3

110 1.08 x 10
5

9.5 x 10
4

9.0 x 10
4

3.3 x 10
5

*
120 1.35 x 10

5
1.20 x 10

5
1.68 x 10

5
4.1 x 10

5

130 1.60 x 10
5

1.47 x 10
5

2.55 x 10
5

5.0 10
5

140 1.85 x 10
5

1.70 x 10
3

3.4 x 10
5

5.8 x 10
5

Table 5 .2 Stiffnesses vs. Critical Speed for Four Truck Designs with Heumann Wheels

CONV SSR FSR I FSR II

Vcr
(mph)

k (lb/ft)
px

k (lb/ft)
px

(k
b2

=10
3
ft-lb/rad

k o =10
6
lb/ft)

k^ 0
(ft-lb/rad)

(k =7.0xl0
4
lb/ft

px
6

k =10 lb/ft)
s2

k^ (ft-lb/rad)

(k =1.0xl0
3
lb/ft

px
6

k =10 lb/ft)
s2

90 3.45 x 10
5

3.10 x 10
5

9.5 x 10
5

1.25 x 10
6

100 4.25 x 10
5

3.70 x 10
5

1.18 x 10
6

1.50 x 10
6

110 5.25 x 10
D

4.32 x 10
5

1.42 x 10
6

1.75 x 10
6

*
120 6.50 x 10

5
5.00 x 10

5
1.66 x 10

6
2.00 x 10

6

130 8.50 x 10
5

6.00 x 10
5

2.00 x 10
6 6

2.35 x 10

*
Baseline
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Truck

Shear

Stiffness,

k

(lb/ft)

Truck Bending Stiffness, k^ (ft-lb/rad)

Figure 5.1 Location of Conventional and Radial Trucks with
New Wheels in the Truck Shear vs. Bending Stiffness
Plane

.
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Truck

Shear

Stiffness,

k

(lb/ft)

Figure 5.2 Location of Conventional and Radial Trucks with
Heumann Wheels in the Truck Shear vs. Bending
Stiffness Plane.
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self-steered radial, and two forced-steered radial truck designs previously-

described are presented in this chapter.

5 . 2 Parametric Tradeoff Studies

In the tradeoff study of conventional trucks
, the work at the flanging

wheel is plotted against the critical speed as a truck with different values

of k
_
negotiates 2.5°, 5°, 10° and 20° curves. Stability/curving performance

px

tradeoff results are shown in Figure 5.3 for a conventional truck with new

wheels and in Figure 5.4 for a truck with Heumann wheels. These figures

demonstrate the inherent tradeoff between stability and curving performance

for which lower critical speeds correspond to decreased work. For a conventional

truck with new wheels negotiating a 20° curve as k is stiffened the work
px

increases from 139 to 189 ft-lb/ft and the critical speed changes from 100 to

140 mph. For lower degree curves in Figure 5.3, the work increases only

slightly with increasing k
^ ,

implying that a higher critical speed can be
px

obtained with minimal decrease in curving performance. For the 2.5° curve,

the work is insensitive to changes in k . The stability/curving performance
px

tradeoff for the conventional truck with Heumann wheels shows that as the

critical speed is increased from 90 to 130 mph the work at the flanging wheel

increases only slightly (6%) for the 20° curve and more significantly for

lower degree curves (64% for the 10° curve; 250% for the 2.5° curve).

The stability/curving tradeoff plots for self-steered radial trucks with

new and Heumann wheels are shown in Figures 5.5 and 5.6, respectively. In

these figures, the primary longitudinal stiffness, k , is the independent
px

variable, while the interaxle bending stiffness, k^j at a low

3
value of 1.0 x 10 ft-lb/rad to permit the wheelsets to orient themselves in

yaw. These figures imply that the self-steered radial trucks with new and

Heumann wheels are subject to the traditional design conflicts between improved
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Figure 5.3 Curving Performance/Stability Tradeoff in Terms
of Work at Flanging Wheel vs. Critical Speed of

a Conventional Truck with New Wheels Negotiating
2.5°, 5°, 10°, and 20° Curves.

10
°

Zi.

2 . 5^_
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Figure 5.4 Curving Performance/Stability Tradeoff in Terms
of Work at Flanging Wheel vs. Critical Speed of
a Conventional Truck with Heumann Wheels Negotiating
2.5°, 5°, 10°, and 20° Curves.
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at

Flanging

Wheel

(ft-lb/ft)

Critical Speed

Figure 5.5 Curving Performance/Stability Tradeoff in Terms
of Work at Flanging Wheel vs. Critical Speed of
a Self-Steered Radial Truck with New Wheels
Negotiating 2.5°, 5°, 10°, and 20° Curves.
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Critical Speed (mph)

Figure 5.6 Curving Performance/Stability Tradeoff in Terms
of Work at Flanging Wheel vs. Critical Speed of
a Self-Steered Radial Truck with Heumann Wheels
Negotiating 2.5°, 5°, 10°, and 20° Curves.



stability and curving performance. For a self-steered radial truck with new

wheels traversing 10° and 20° curves, the work increases approximately 75% as

the critical speed changes from 100 to 140 mph due to increasing k . For a
px

truck with Heumann wheels, the work increases 65% for the 10° curve and 14%

for the 20° curve with changes in critical speed from 90 to 130 mph. At lower

degree curves, the work increases more for the truck with new wheels (from 1

to 8 ft-lb/ft at 2.5° as critical speed increases from 100 to 140 mph) than

for the truck with Heumann wheels (10 to 15 ft-lb/ft at 2.5° as critical

speed changes from 90 to 130 mph)

.

Two forced-steered truck designs are considered in the tradeoff study.

The first design, FSR I, has a soft primary longitudinal stiffness (k =
" px

4
7.0 x 10 lb/ft); the second design, FSR II, practically has negligible

3
primary longitudinal suspension (k^ = 1.0 x 10 lb/ft). In Figures 5.7 and

5.8 graphs of flanging wheel work versus critical speed are shown for the

FSR I and FSR II designs with new wheels, respectively; in Figures 5.9 and

5.10 the corresponding graphs are shown for the trucks with Heumann wheels.

In these figures the independent variable is the interaxle bending stiffness,

k^
2

* For both designs with new and Heumann wheels, the work is almost

insensitive to increases in k, „ at low degree curves. The work in negotiating
d l

a 2.5° curve is 1 ft-lb/ft for the range of k^
9
values. Thus for negotiation

of low degree curves, it is advantageous to stiffen k^ to maximize the

critical speed while the work remains relatively constant (and small). For the

two forced-steered truck designs with new wheels negotiating higher degree

curves, the work increases slightly with increasing critical speed, as k^ 9

is stiffened. The work increases because of understeering of the lead wheelset

which was shown to occur for forced-steered trucks with new wheels and pure
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Figure 5.7 Curving Performance/Stability Tradeoff in Terms
of Work at Flanging Wheel vs. Critical Speed
of a Forced-Steered Radial Truck, FSR I, With
New Wheels Negotiating 2.5°, 5°, 10°, and 20°

Curves
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Figure 5.8 Curving Performance/Stability Tradeoff in Terms
of Work at Flanging Wheel vs. Critical Speed of
a Forced-Steered Radial Truck, FSR II, With New
Wheels Negotiating 2.5°, 5°, 10°, and 20° Curves
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Figure 5.9 Curving Performance/Stability Tradeoff in Terms
of Work at Flanging Wheel vs. Critical Speed of
a Forced-Steered Radial Truck, FSR I, With Heumann
Wheels Negotiating 2.5°, 5°, 10°, and 20° Curves.
(*Work at Trailing Outer Wheel)

.
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Figure 5.10 Curving Performance/Stability Tradeoff in Terms
of Work at Flanging Wheel vs. Critical Speed of
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Wheels Negotiating 2.5°, 5°, 10°, and 20° Curves.
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rolling line steering gains. As the FSR I truck design with Heumann wheels

negotiates higher degree curves the work at the flanging wheel decreases as

the critical speed increases with stiffer k^* The work for a FSR II truck

with Heumann wheels negotiating higher degree curves remains essentially con-

stant. For these trucks with Heumann wheels the pure rolling line steering

gain provides effective steering of the wheelsets and thus the work decreases

or stays constant as k, „ is increased. This represents an ideal situation
bZ

since no tradeoff exists. A stiffer k^ is desirable since it gives a more

stable truck with the same or improved curving properties.

5 . 3 Comparative Performance of Conventional, Self-Steered, and Forced-Steered
Trucks

The tradeoff plots of the previous section are summarized in Tables 5.3

and 5.4 for trucks with new and Heumann wheels, respectively. These tables

list the work at the flanging wheel for a conventional, self- steered radial,

and two forced-steered radial truck designs negotiating 2.5°, 5°, 10°, and 20°

curves as a function of critical speed. Tables 5.3 and 5.4 can be used to

compare the curving performance of the different trucks at the same critical

speed

.

The forced-steered radial truck designs exhibit superior performance when

negotiating tight curves, since they can take advantage of the large relative

yaw angle between the truck and carboay to steer the wheelsets into radial

alignment. In Tables 5.3 and 5.4 the work of the two forced-steered radial

truck designs negotiating 20° curves is appreciably lower than that of the self

steered radial or conventional truck having the same critical speed. For

instance, for trucks with new wheels and 120 mph critical speeds the work

for the FSR I truck is 91 ft-lb/ft as compared with 138 ft-lb/ft for the

self-steered radial truck and 149 ft-lb/ft for the conventional truck.

The work for the FSR II truck is 64 ft-lb/ft.
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Table 5.3 Curving Performance/Stability Tradeoff in Terms of Work at Flanging
Wheel vs. Critical Speed for Four Truck Designs with New Wheels
Negotiating 2.5°, 5°, 10°, and 20° Curves

Work at

\. FlangingN's
S. Wheel

Critical'^df t-lb/

Speed ft)

(mph) \

Conventional
Self-Steered

Radial
Forced Steered
Radial FSR I

Forced Steered
Radiall FSR II

2.5° 5° 10° o
o 2.5° 5°

h—O
o 20° 2.5° 5° 10° O

OCM 2.5° 5° 10° 20°

V = 100
cr

1 30 86 139 1 10 50 90 1 11 50 90 0 1 13 60

V =110
cr

1 34 88 141 1 17 62 112 1 11 51 91 0 1 17 62

V = 120*
cr

1 39 90 149 2 24 72 138 1 12 52 91 0 1 19 64

V = 130
cr

1 44 92 171 5 31 82 150 1 13 53 91 1 1 22 65

V = 140
cr

1 48 95 189 8 37 89 158 1 14 54 92 1 1 25 67

*
Baseline



Table 5.4 Curving Performance/Stability Tradeoff in Terms of Work at Flanging

Wheel vs. Critical Speed for Four Truck Designs with Heumann Wheels

Negotiating 2.5°, 5°, 10°, and 20° Curves

N. Work at

Flanging
''v Wheel

Critical

'

SV ( ft- lb/

Speed ft)

(mph) N.

Conventional
Self-Steered

Radial
Forced Steered
Radial FSR I

Forced Steered
Radial FSR II

2.5° 5° 10° 20° 2.5° 5° 10° 20° 2.5° 5° 10°
k

20°
k

2.5° 5°
*

10°
* **
20°

V =90
cr

4 13 47 124 10 24 41 110 1 2 7 18 i 2 2 16

V = 100
cr

5 18 55 128 13 25 49 115 1 2 7 18 i 2 2 16

V =110
cr

8 24 63 130 14 27 55 119 1 2 7 18 i 2 2 16

V = 120*
cr

11 29 69 131 15 29 61 122 1 2 7 18 i 2 2 16

V =130
cr

14 34 77 132 15 31 68 125 1 2 6 17 i 2 2 16

* **
Baseline Work at Trailing Outer Wheel



The advantage of the forced -steered radial trucks is most evident at higher

critical speeds. For example, at a critical speed of 140 mph the work is

189, 158, 92 and 67 ft-lb/ft for conventional, self-steered radial, forced

steered FSR I and FSR II trucks, respectively, with new wheels. Higher

critical speeds for the conventional and self-steered radial trucks are

achieved by increasing the primary longitudinal stiffness, k , resulting
px

in significantly degraded curving performance indicated by increased work.

On the other hand, increasing the interaxle bending stiffness, k of the

forced-steered radial trucks (up to a certain value) increases the critical

speed and only slightly degrades the curving performance for trucks with new

wheels resulting in a minimal increase in work, and actually improves or

maintains the curving performance of trucks with Heumann wheels resulting in

a decrease in work.

In comparison of the different trucks with new wheels (Table 5.3) at

low critical speeds, the first forced-steered truck design, FSR I, behaves

similar to the self-steered radial truck which performs better than the

conventional truck. At a 100 mph critical speed design, the work for a

conventional truck is 86 ft-lb/ft versus 50 ft-lb/ft for both the self-

steered and forced-steered FSR I trucks negotiating a 10° curve. The forced-

steered design FSR I does not possess sufficient steering action due its the

soft interaxle bending stiffness, k^, at low critical speeds (at V^ = 100

4
mph the k^ is 1.0 x 10 ft-lb/rad for FSR I) and thus behaves like the self-

steered radial truck. The second forced-steered truck design, FSR II, offers

superior curving performance due to the practical absence of primary

longitudinal stiffness and higher value of k^ 0 (at V = 100 mph, k^ = 2.4 x

10
5

ft-lb/rad). The work is 13 ft-lb/ft for a FSR II truck designed for a
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100 mph critical speed traversing a 10° curve.

The work at the flanging wheel as a function of curvature is shown in

Figure 5.11 for the different (baseline) trucks with new wheels, all at the

same critical speed of 120 mph. The improvement in curving performance by

employing self-steered over conventional designs and by utilizing forced-

steered instead of self-steered truck designs is demonstrated. Further the

curving performance of the forced-steered truck FSR II at all degree curves

is shown to offer over a factor of two reduction in the work at the flanging

wheel in comparison to the conventional truck.

The steady-state lateral force at the leading outer wheel as a function

of curvature is compared in Figure 5.12 for the baseline trucks. Lower

lateral forces are predicted for the forced-steered truck designs than the

conventional and self-steered trucks. The self-steered truck has slightly

lower forces in comparison to the conventional truck, except at very steep

curvatures ( > 15°) for which the lateral force predicted for the conventiona

truck is slightly less than that associated with the self-steered design.

This occurs because at very tight curvatures the leading outer wheel

lateral force is approaching its theoretical maximum, i.e., the adhesion

limit, and the self-steered truck has a higher normal load due to the added

weight of the steering linkages.

In Table 5. A the different trucks with Heumann wheels are compared. The

self-steered radial truck offers a slight improvement in curving performance

in comparison to the conventional truck for moderate and tight curves. For,

low degree curves, the conventional truck performs better than the self-

steered radial truck, as high values of shear stiffness cause the wheelsets

of the radial truck to flange somewhat sooner than those of the conventional
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Degree Curve (deg)

Figure 5.11 Work at Flanging Wheel vs. Curvature for Baseline

Truck Designs with New Wheels (Critical Speeds =

120 mph)

.
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Leading

Outer

Wheel

Lateral

Force

(lb)

Figure 5.12 Leading Outer Wheel Lateral Force vs. Curvature

for Baseline Truck Designs with New Wheels

(Critical Speeds = 120 mph)

.
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truck. Significant advantages are gained by employing the forced steered

truck designs over the conventional or self-steered trucks at all degree

curves, especially for designs at high critical speeds.

Figures 5.13 and 5.14 are graphs of the work and lateral force at the

flanging wheel, respectively, versus degree curve for the different (baseline)

trucks with Heumann wheels and critical speeds of 120 mph . The slight

reduction in work of the conventional truck in comparison to the self-steered

radial truck at low degree curves is due to the earlier onset of flanging.

In contrast, at high degree curves ( > 10°) the lateral force of the self-

steered radial truck is slightly larger than the force of the conventional

truck. This is due to the larger adhesion limit for the self-steered truck

as a result of the added weight of the steering linkages. Both figures

demonstrate the potential of employing forced-steered trucks in contrast

to conventional and self-steered trucks

.

The forced-s teered truck designs are advantageous in comparison to the

conventional truck not only because they reduce the work (and force) at the

flanging wheel, but because they more equally distribute the work at the

four wheels. The total work and distribution of work at the contact patches

for the different trucks with new wheels is shown in Figure 5.15 and for

trucks with Heumann wheels in Figure 5.16, where all trucks have critical

speeds of 120 mph and are negotiating 10° curves. A reduction and equalization

of work occurs for the forced-steered truck designs with Heumann wheels.

In this report, the curving performance (and stability) studies have

focused on the behavior of the front truck. In general, as a vehicle negotiates

a curve, more work is expended for the front truck than for the rear truck.

This is due to the directions of the secondary suspension yaw moments which
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Degree Curve (deg)

Figure 5.13 Work at Flanging Wheel vs. Curvature for Baseline
Truck Designs with Keumann Wheels (Critical Speeds
120 mph)

.
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Leading

Outer

Wheel

Lateral

Force

(lb)

Figure 5.14 Leading Outer Wheel Lateral Force vs. Curvature
for Baseline Truck Designs with Heumann Wheels
(Critical Speeds = 120 mph)

.
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act on the trucks, as shown in Figure 4.10. The yaw moment on the front

truck hinders curving by helping to push the leading outer wheel into the

flange, whereas the yaw moment on the rear truck helps curving by yawing

the truck in the direction of the curve. As a result, in general it is the

leading outer wheel of the vehicle which experiences the majority of the

contact patch work. Thus, in the curving performance studies the work

generated at the leading outer or flanging wheel of the front truck is used

as the principal curving performance index.

Considerations of the power dissipated by the different trucks as they

negotiate a curve illustrates the potential performance improvements possible

with advanced designs. Table 5.5 is a summary comparison of the flanging

wheel work, total work, and power requirements of the front and rear trucks

for baseline designs (i.e., 120 mph critical speed designs) with new wheels

negotiating 10° curves. The table shows that more work is expended for the

front truck than for the rear truck, especially for the steered truck designs

which have additional moments helping to steer the rear truck around the curve.

Furthermore, the table shows the front truck, rear truck, and total vehicle

power for negotiation of the 10° curve at 50 ft/sec (34 mph) for the different

truck designs. The significantly reduced dissipated power of the forced-

steered vehicles, especially the FSR II design with 6.4 HP, in comparison to

the conventional vehicle with 21.4 HP emphasizes the potential advantages of

employing forced-steering to reduce fuel consumption.

In general, forced-steered truck designs offer significant advantages

over the conventional and self-steered trucks. This is especially true for

trucks with Heumann wheels and for trucks negotiating tight curves.
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Table 5.5 Comparison of Flanging Wheel Work, Total Work, and Power
Requirements of Front and Rear Trucks for Baseline Designs
With New Wheels Negotiating 10° Curves

Self-Steered
Radial

Forced-Steered Radial

Conventional
FSR I FSR II

Flanging Wheel
Work (ft-lb/ft) 90 72 52 19

FRONT
TRUCK

Truck Work
(ft-lb/ft) 118 103 79 45

*
Truck Power

(HP) 10.7 9.4 7.2 4.1

Flanging Wheel
Work (ft-lb/ft) 80 48 37 11

REAR

TRUCK

Truck Work
(ft-lb/ft) 113 84 57 25

*
Truck Power

(HP) 10.7 7.6 5.2 2.3

Vehicle Total Power (HP) 21.4 17.0 12.4 6.4

@ 50 ft/sec (34 mph)
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CHAPTER 6

CONCLUSIONS

This study has evaluated the stability and curving performance of

conventional and advanced design rail transit trucks. A general performance

model which incorporates conventional, self-steering radial and forced-

steering trucks has been formulated. This model is sufficiently general

so that it can be utilized to represent transit track designs currently in

use as well as those which have been proposed at this point in time for

possible development.

The general model has been incorporated into two computer programs for

performance evaluation. The first program, the dynamic stability program,

is used to compute the truck critical speed at which sustained hunting

occurs using linear eigenvalue analysis techniques. The second program,

the steady-state curving program determines the curving forces, angles of

attack and wheel/rail contact patch work performed as a vehicle negotiates

a constant radius curve at constant speed. The curving analysis is based

upon nonlinear representations of vehicle suspension elements and nonlinear

geometry including single- and multiple-point wheel/rail contact and creep

force saturation.

Parametric studies have been conducted to determine the influence of

vehicle suspension parameters and wheel profile on vehicle critical speed and

curving performance measured in terms of work generated in the wheel/rail

contact patch per unit distance traveled.

For conventional trucks, parametric studies have shown that the two

dominant design parameters in stability and curving are truck primary

longitudinal suspension stiffness and wheel profile. Broad ranges of
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values for truck primary lateral suspension stiffness and secondary suspension

yaw stiffness were found for which both stability and curving performance

parameters were insensitive. For new AAR wheel profiles with a 0.05 conicity

it was found that typical truck primary suspension stiffness varied from

5 6
1 x 10 lb/ft to 2 x 10 Ib/ft and resulted in designs with critical speeds

ranging from 110 mph to 210 mph. Increases in longitudinal stiffness above

this range resulted in decreases in critical speed. As the stiffness is

decreased the work required to negotiate a curve decreases. For a 10° curve

with operation at balanced speed, the work developed at the flanging wheel is

155 ft-lb/ft at a design longitudinal stiffness of 2 x 10 ^ lb/ft and 85 ft-lb/ft

at a design longitudinal stiffness of 10^ lb/ft. Thus, a direct tradeoff exists

between critical speed and work performed during curving with respect to

primary longitudinal stiffness. Trucks with relatively high values of

stiffness (approaching 10 Ib/ft) will have improved curving performance if

lower stiffnesses are used and the associated lower critical speeds are

acceptable

.

The use of Heumann wheels with an effective conicity of 0.2 in the

conventional truck results in a tradeoff between stability and curving. To

achieve a given value of critical speed with the higher conicity Heumann

wheel profile requires a higher primary longitudinal stiffness than for the

0.05 conicity wheel truck designs. For example at a critical speed of 125 mph

the 0.2 conicity wheel requires a stiffness of 6.5 x 10^ lb/ft while a

0.05 conicity wheel suspension design requires a stiffness of 1.04 x 10

lb/ft. At this critical speed the higher conicity wheel requires 22% less

work per unit distance traveled than the truck designed for the 0.05

conicity wheel to negotiate a 10° curve. Conventional truck designs with
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the same critical speed but with higher conicity wheels result in reduced

work required in curving. It should be noted, however that in the range

of practical longitudinal primary stiffnesses, the 0.2 conicity wheel was

found to have a maximum design critical speed of 130 mph and if higher

critical speeds are desired reduced conicity wheels are required.

Parametric studies of self-steering radial trucks identified interaxle

bending stiffness, primary longitudinal stiffnesses and wheel profile to

be the primary parameters influencing the stability/ curving tradeoff. For

trucks with tapered or Heumann wheels, stability was found to be insensitive

to increases in interaxle shear stiffness once a value of 5 x 10
" lb/ft is

exceeded and also independent of secondary suspension yaw stiffness for

values approaching the baseline design value. Stability studies conducted

on self-steering trucks have shown that stability may be achieved with

a combination of interaxle bending stiffness and primary suspension stiffness.

As these quantities are increased critical speed increases; however, the

work performed during curving also increases. The studies have concentrated

3
on designs with low interaxle bending stiffnesses of 10 ft-lb/rad and a

high interaxle shear stiffness of 10^ lb/ft since this combination provides a

relatively good stability/curving tradeoff. The primary suspension

longitudinal stiffness has been selected as the primary design parameter

used to achieve desired levels of critical speed. Data have shown that the

critical speed increases from 100 mph to 130 mph and the work to negotiate

a 10° curve increases from 50 to 82 ft-lb/ft as primary suspension stiffness

4 5
is increased from 7.0 x 10 lb/ft to 1.5 x 10 lb/ft for 0.05 conicity

wheels. For 0.2 conicity Heumann wheels, the stiffness required to achieve

critical speeds of 100 mph and 130 mph is higher, 3.7 x 10^ lb/ft and
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6 x 10 lb/ft, respectively, and the corresponding work required to negotiate

a 10° curve is 50 ft-lb/ft and 68 ft-lb/ft. For a lower critical speed

design of 100 mph the work required to negotiate a 10° curve for low conicity

tapered and high conicity Heumann wheel suspension designs is similar while

for the higher critical speed designs of 130 mph, the higher conicity Heumann

wheel uses 20% less work than the lower conicity wheel.

Data comparing the work required to negotiate 10° curves for conventional

and self- steering radial trucks designed for a critical speed of 130 mph

have shown for both the low and high wheel conicity designs that approximately

a 12% decrease in work is required for the radial truck in comparison to

the conventional truck.

An extensive parametric study of forced-steering trucks employing

steering links between the carbody and the axles has been conducted. As a

result of this study it has been shown that principal stability/curving

tradeoff design parameters include truck primary suspension longitudinal

stiffness, steering link stiffness and wheel conicity while secondary design

parameters which may be selected within relatively broad ranges include

primary suspension lateral stiffness and secondary suspension yaw stiffness.

The geometric gain of the steering linkage was selected in the studies to

yield a design which nominally tracks the pure rolling line of a given degree

curve. As a result of the studies two designs designated FSR I and FSR II

were selected. Design FSR I employs a relatively low value of primary

4
suspension longitudinal stiffness of 7 x 10 lb/ft, while design FSR II

3
employs a very low value of longitudinal stiffness of 1 x 10 lb/ft which

was selected to represent a lower limit of stiffness. Low values of

primary suspension longitudinal stiffness are desired in forced-steering
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trucks to allow the wheelsets to adopt a radial orientation during curving.

Stability is achieved in these low primary stiffness designs by increasing

the steering link stiffness- As the steering link stiffness is increased,

critical speed increases until a sufficiently large value of steering link

stiffness is achieved for which further increases in stiffness decrease

critical speed. Data comparing the work required to negotiate a 10° curve

for designs with suspension parameters selected to yield a critical speed

of 130 mph have shown for 0.05 conicity wheels that design FSR I requires

53 ft-lb/ft while FSR II requires 22 ft-lb/ft and for 0.2 conicity wheels

that design FSR I requires 6 ft-lb/ft and FSR II requires 2 ft-lb/ft. These

data show that for the same critical speed suspension designs, lower

values of primary suspension longitudinal stiffness result in decreased

work during curving and that the higher conicity wheels also result in

decreased work during curving. The practical lower limit on primary

suspension stiffness is determined by a combination of factors involving

details of the truck propulsion and braking systems and requires study

beyond the scope of this report.

Work required during curve negotiation for the forced-steering truck

designs is less than that for conventional and radial tracks with similar

critical speeds. For a critical speed of 130 mph using 0 . 05 conicity wheels

,

the work required to negotiate a 10° curve is 92 ft-lb/ft for the conventional

design, 82 ft-lb/ft for the radial design, 56 ft-lb/ft for forced-steering

design I and 28 ft-lb/ft for forced-steering design II. And for 0.2 conicity

wheels, the work is 77 ft-lb/ft, 68 ft-lb/ft, 6 ft-lb/ft and 2 ft-lb/ft.

These data show significant reductions in work for forced-steering truck

designs in comparison to conventional and radial truck designs. The reductions
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in work are more significant with the higher conicity 0.2 Heumann wheels than

the 0.05 conicity tapered wheels. Thus, forced-steering trucks show potential

to utilize high conicity wheels to reduce work generated during curving in

comparison to conventional and radial trucks with the same critical speeds.

This potential with high conicity wheels can be most effectively realized for

truck designs with critical speeds in the range up to 130 mph. If higher

critical speed designs are required, then a wheel conicity less than 0.2 is

required for the range of truck suspension parameters explored in this report.

For specific transit authorities, the selection of an appropriate

truck design depends upon the number and severity of curves which influence

the relative importance of the wheel wear performance parameters measured

in terms of work and depends upon the required truck critical speed which is

related to maximum system operating speed. The potential for reduction in

wheel wear during curving offered by forced-steering truck designs must be

assessed in terms of the increased complexity associated with the forced

steering linkage designs, the practicality of maintaining the required high

relative stiffness in the forced-steering links, and the capability to

accommodate braking and propulsion forces with relatively low primary

longitudinal stiffnesses. These issues can best be resolved through analysis

and testing of prototype forced -steering truck designs.

This report summarizes data and analysis for conventional and advanced

truck designs based upon stability and steady-state curve negotiation. A

continuation of this study is planned to determine the dynamic behavior of

these trucks during spiral curve entry and exit as well as during track anomoly

negotiation

.
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APPENDIX A

DERIVATION OF CURVATURE STEERING GAIN AND INTERAXLE
BENDING STIFFNESS FOR THREE FORCED STEERING TRUCK PROTOTYPES

In this Aopendix the curvature steering gains and interaxle bending

stiffnesses for three forced-steering truck prototypes are derived. Each

curvature steering gain is derived by assuming the linkages are perfectly

rigid, and calculating the resultant steering action Aip between the wheel-

sets (i.e., when yaw angles of the tx^o wheelsets are in equal and opposite

directions) as a result of yawing the carbody. As expressed in the steering

law, the curvature steering gain is a ratio between the resultant steering

action A\p and the motion that causes the steering action (the carbody yaw

in this case) . The interaxle bending stiffness is derived by performing

an experiment, where the two wheelsets are yawed in opposite directions to

form a steering angle Alp between them. The external moment that has to be

applied on each wheelset, which is due to the steering linkage stiffnesses

only, is calculated from static force and moment balances on the truck and

its parts. During the experiment the bolster is restrained from yawing,

but is permitted to follow the truck laterally to achieve static

equilibrium. The primary suspension system, which is not part of the

steering linkage, has been left out of the analysis, except in the case

of the L prototype, where the primary lateral stiffness has an effect on

the interaxle bending stiffness. The interaxle bending stiffness is

given by the ratio of the symmetrical external moment on each wheelset,

and the resultant steering action Aw.
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A . 1 The S Truck Prototype

The schematic of the S prototype is shown in Figure A.l. The steering

linkages lie in the vertical plane such that the lateral distance from the

truck centerline to any node shown is d. The steering law for the prototype

is :

Alp = + 2G [
~ V (A-l)

where the plus sign is for the front truck and the minus sign for the rear

one

.

To illustrate the effect on the steering linkages due to the carbody

yaw (and hence bolster yaw) only, the steering law is reduced to

Alp = + 2G(-tp )— c
(A-2)

which, for the front truck, gives the curvature steering gain as:

G =
Aip

(-2V
(A-3)

with the assumption of rigid steering linkages, yawing the carbody in the

negative direction produces Alp as shown in Figure A. 2.

With small motion assumptions, s.
Aip

x d ( A-4)

S
1
+ s

2
= £

1
(A-5)

From the expanded diagram of the linkages:

s^j x U = s^ (A-6)

x 6 = s^

A-2

(A- 7)



Outboard

Axle

Inboard
Axle

+ip

A\p = + 2G( r™~ -
iff )
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G =

h + 2l
2

*b2 ' I A fS
(1

l. + l.

Figure A.l Schematic of the S Forced-Steering Truck
Prototype
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Figure A. 2 Kinematic Steering of the S Truck Prototype
(Front Truck)

Combining equations (A-4) through (A-7) yields

9
All x d

JL

and

s
1

(A-8)

(A-9)

Recalling that the steering linkages lie in the vertical plane and not in

the horizontal plane as shown in the diagram, the following relation is

obtained

:

s^ = 0x(s
9 + ly) = (-iJO x d

A-

4

(A-10)



which, upon substitution of equation (A-8) and (A-9)
,
yields

(A-ll)

Rearranging equation (A-ll) according to the definition of equation (A-3)

,

the curvature steering gain is given by:

G - ^ h ,, 12 ,G
(~2ip ) JL + 21

(A 12)

c 12
The gain G can also be derived by having zero carbody yaw and yawing the

whole truck with its wheelsets, which leads to the same result as given by

equation (A 12) . The interaxle bending stiffness is calculated by yawing

each wheelset through an angle A^/2 in opposite directions to form a

steering angle Alp and calculating the effective resistance provided by the

steering linkage stiffness. Figure A. 3 shows the free body diagram of the

wheelsets after the steering angle Alp is imposed on them. (Because of

symmetry about the truck lateral midplane only half of the truck is

analyzed)

.

Assuming small motions, h^ = x d (A-13)

The distance h^ is found by using similar triangles to be:

i
2

h
2

h
1

(A-14)

2

The deflection of spring k^ is A = h^ + h^ (A- 15)

which, after substitution of equation (A-13) and (A-14), is given by
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(A-17)

The force F
9 is equal to the spring force and is

2
}
_M>_F

2
k
fs

d(1 +
+ £

2
' 2

Writing a moment balance about point 0 gives F^ as

F
i

~ k
fs

d(1 + 'X^xr) ^~T~TT~'> ~~2~ (A-18)
1 2 1 2

The forces F.. and F 0 can each be decomposed into two components F andid a

F, where
b

F = F - F
1 a b

(A- 19)

= F + F, (A-20)

Equations (A-17) through (A-20) can be used to calculate F ,

3

h
}

2 _a^
F
a

= k
fs

d (1 +
"T, + £ 4

(A-21)

The force component F^ acts in the same direction on both wheelsets and

represents the tendency of the spring k^
g

to yaw both wheelsets in the

same direction. On the other hand, the force component F^ acts in

opposite directions on the two wheelsets. It is the resistance from the

spring k^
s

against yawing the two wheelsets in opposite directions (i.e.,

against imposing the steering angle A\p on the wheelsets) . Thus the

interoxl e bending stiffness is due to F , which should be overcome by

applying external moment ,

M = 2d x F
e a

A-

7

(A- 2 2

)



The interaxle bending stiffness is defined as

^2
M
e

(A-23)

and is given by (A-24)

after substitution of equations (A-21) and (A-22) into equation (A-23)

.

A. 2 The L Truck Prototype

The steering law for the L prototype, shown in Figure A. 4, is:

The gain consists of two terms; the first term is the primary steering

action which senses the track curvature and steers the wheelsets into a

radial alignment around a curve. The second term is a secondary effect

that results from the linkage arrangement of the prototype. This effect

is usually negligible unless the truck has very soft primary lateral

stiffnesses, in which case the wheelset pair can move laterally with

respect to the truck frame. The derivation of the curvature steering gain

is done separately for the two steering actions mentioned above. The

curvature steering gain due to the primary steering action, G, is most

easily derived by having zero (y^-y
2

) an ^ yawing the carbody in the negative

direction, where G (for the front truck) is defined as:

Figure A. 5 shows the kinematic steering of the front L truck prototype with

the truck stays stationary, assuming perfectly rigid steering linkage. To

Aijj = + 2G [ (A-25)

G*
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L Prototype

y -y

W = + 2G(
1

2

~ ~
if>

c
)

. . G+l % ,

y
i
+V

2
+2(___)

( - - yT
)

b-l.

*b2

(b-Jt )

2
k k

1 fs py
(4k +k )

py fs

*
Assumes stiff k _ for symmetry

sz

Figure A. 4 Schematic of the L Forced-Steering Truck Prototyp



X

Figure A. 5 Kinematic Steering of the Front L Truck Prototype

Figure A. 6 Secondary Kinematic Steering of the Front L

Truck Prototype
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achieve a symmetrical configuration, a very high value of interaxle

shear stiffness has been assumed. This assumption is justified by the

fact that the physical prototype does have a high value of interaxle

shear stiffness. The mathematical model can still be used with low inter-

axle shear stiffness provided the physical linkage arrangement is modified

to include symmetrical steering linkages with respect to both wheelsets.

One possible such modification is shown in reference [19].

From Figure A. 5, as a result of (-i/O carbody yaw, each wheelset is

yawed through an angle AiJ>/2, forming a steering angle Alp between the

wheelsets. With a small motion assumption the following relations are

obtained

:

m = (-ip ) x l (A-27)
c 1

Alp/2 = (A-28)

Equations (A-26) through (A-28) are combined to give

(A-29)

as the primary effect curvature steering gain.

The secondary effect curvature steering gain can be derived by moving

the truck frame laterally with respect to the wheelset pair, as shown in

Figure A. 6. Since the bolster follows the truck motion in the lateral

direction

,

n -y. (A- 30)

A- 11



For small motion.

Aijj/ 2 = n

b-£.
(A- 31)

The secondary steering gain is defined by the steering law as

Alt'

C-2y
t

)

(A-32)

which, after substitution of equations (A- 30) and (A-31) is given by

b-&.
(A-33)

Comparing with equation (A-29) , G can be rewritten as

G+l
(A-34)

The secondary steering effect acts in the same direction on both the leading

and trailing trucks and hence has the same sign for both trucks in the

steering law.

Figure A. 7 shows the free body diagram of the L truck prototype after

the external moment is applied on both wheelsets to achieve a steering

angle Aip between the wheelsets. As a result the truck frame moves laterally

a distance y^
and yaws through an angle ip^ , both in the negative direction,

to achieve a new equilibrium configuration. Taking a moment balance about

point C (center of the truck) , and lateral force balance on the truck yields

2k (yTpy t
b^

T
)b 2 k

py
(y

T
- bV b + F

fs
(A- 35)

F
fs

4k v
py-T

(A-36)
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Figure A. 7 Free Body Diagram of the L Truck Prototype
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Substituting equation (A- 36) into (A-35)

:

y/i
(A-37)

The deflection of spring k^ can be determined from the spring force F^

as given by equation (A-36) or from the geometry as:

f s

fs

'fs

4 k y
P^-J-
k
fs

(A-38)

f s
Ml (b - V ' y

T
(A- 39)

respectively

.

Solving for y^
from equations (A-38) and (A-39) and substituting the

result into equation (A-36) leads to:

fs

2k A\p (b-Z^k c
PY 1) fs

(4k + k, )

py fs

(A-40)

Taking a moment balance on the trailing wheelset about point B gives

F 0 b = M'
3 e

(A-41)

while doing the same on the leading wheelset about point A yields

F b + M* = F x (b-H.)
3 e fs 1

(A-42)

Combining equations (A-40) through (A-42)

M' =
e

AL (b-Z )“k c k
1 fs py

(4k + k )

py fs

(A-43)

The interaxle bending stiffness, defined bv the ratio of M' and Alp
e

thus given by

is

A-14



1tC

b2
(A-44)

(b -£
x

)

2

(4k
py

k - k
fs py

A. 3 The U Truck Prototype

The steering action for the U prototype is given by the following

steering gain:

A ip = + 2G(ip
T

- \l>

c
) (A-45)

which utilizes the relative yaw angle between the truck and the carbody to

sense the track curvature. The following derivation of the curvature

steering gain assumes zero truck yaw so that the relative yaw angle

between the truck and the carbody is given by the carbody yaw. With this

assumption, equation (A-45) gives the gain G for the front truck as:

G = Aip

(~2\p )
c

(A-46)

Figure A. 8 shows the kinematic steering of the front truck as a result

of yawing the carbody in the negative direction. Each wheelset is yawed

through an angle Aip/2 in opposite directions, creating a steering angle

Alp between them. Assuming small motions.

d
1

(~\p ) x £
c 6

(A-47)

d
2

(A-48)

Relative dimensions of the linkages can be expressed in terms of a lever

ratio, defined as:

A- 15



Figure A. 8 Kinematic Steering of the Front U Truck
Prototype



for outboard axle (A-49)VS

V£
5

for inboard axle (A-50)

which is usually designed to be the same for both axles to achieve a

symmetrical truck configuration.

From similar triangles, the following relation is established:

(A-51)

Upon combining equations (A-46) through (A-49) and equation (A-51) , the

curvature steering gain G is given by:

G =
£ £„
R 3

(A-52)

For a symmetrical truck with the same lever ratio £ for both axles

,

equation (A-52) applies for both axles.

The modeling of the U prototype steering linkages is slightly

different from that of the previous two prototypes. The steering

linkage stiffnesses of the U prototype are actually modelled as an

effective bending stiffness between the truck and each wheelset in series

with the geometric offset, as shown in Figure A. 9. This is true since

yawing one of the wheelsets, in the absence of carbody yaw, only

directly affects the truck frame and not the other wheelset. For

uniformity this effective bending stiffness is considered as an "inter-

axle bending stiffness". Thus the term "interaxle bending stiffness"

A- 17



Figure A. 9 Schematic Diagram of Simplified U Prototype
Model

Figure A. 10 Free Body Diagram of the Outboard Axle of
The U Prototype

A- 18



for forced-steering trucks refers to the effective bending stiffness in

series with the geometric offset.

A moment balance on one of the wheelsets of Figure A. 9 defines the

effective bending stiffness as:

M"

Figure A. 10 shows the free body diagram of the outboard axle of the U

prototype after an external moment M^' is applied on it to produce a

wheelset yaw Alp/2. Using small motions assumption:

h
l

II CD Jo

1—
’ (A-54)

h 0
4m

= 9£
2

(A-55)

h
3

- 5
2 3

(A-56)

Deflections of springs and k
2

on the right half of the truck are given.

respectively, by:

A^ (compres sion) = h^ = 0£ (A-57)

A
2
(extension) h

3
_h

2

Ai|

)

2 -v CD Jo

ro

(A-58)

creating spring forces F^ and F
2

:

A ’ k
l
4
l

(A-59)

Fo
z

' k
2
A
2

(A-60)
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which are related, from a moment balance about point A, as:

Vl = F
2
Z
2

(A_61)

Solving for 9 from equations (A-57) through (A-61) and using the

definition of equation (A-49)

:

k Z Alp

0 = (A-62)

2Wl + V
A moment balance on the wheelset yields:

M"
e

2F
2

2
3

(A-63)

The effective bending stiffness is found by combining equations (A-58)

,

(A-60) , (A-62), (A-63) and (A-53) and is given by:

k
l

k
2

£
3

£
R

<4 k
i
+ v

(A-64)

The effective bending stiffness for the inboard axle can be derived in

a similar fashion. For a symmetrical truck, it yields the same result

as for the outboard axle given by equation (A-64)

.
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APPENDIX B

DERIVATION OF CURVATURE STEERING GAIN

For tracking the pure rolling line in curves the yaw geometry

offset is

A\p

2b
(B-l)

pril R

when T^ and k^ are negligible. From simple geometry (assuming small

angles) , the following relations hold when the wheelsets track the pure

rolling line in equilibrium in the absence of cant deficiency:

+ ir

ip =0
c

Substituting into the curvature steering law yields:

Z

Ay
pr£

-2L- = T G —

^

R " pril r

(B-2)

(B— 3)

(B— 3)

The curvature gain for tracking the pure rolling line is thus

b
Jpr£ Z

(B-5)
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APPENDIX C

LINEARIZED EQUATIONS FOR THE 6 DOF STABILITY MODEL (CONVENTIONAL TRUCK)

C . 1 Conventional Truck Model

A schematic diagram of the six degree of freedom model for a conven-

tional truck is shown in Figure C.l. The truck is attached to an "inertial"

carbody by the secondary suspension. The degrees of freedom are:

• leading wheelset lateral displacement

• leading wheelset yaw angle

• trailing wheelset lateral displacement

• trailing wheelset yaw angle

• truck lateral displacement

• truck yaw angle

The following assumptions are made:

• all masses are rigid

• the vertical and longitudinal motions are assumed to be decoupled

from the lateral

• the vehicle is moving at a constant forward speed

• the truck roll angle is assumed to be the average of the roll

angles of its two wheelsets

• all displacements are assumed to be small

• all wheel/rail and suspension forces are assumed to be linear

• the effect of track irregularities is neglected.

C . 2 Wheel/Rail Geometry

In the stability analysis the displacements of the wheelset from its

centered position are assumed to be small and thus the geometric wheel/rail

constraint functions are linearized. Therefore, the various parameters can

C-l



j-w— —w—

I

sy

Figure C.l 6 DOF Conventional Truck Model Connected
to an Inertial Reference Frame
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be described as a function of the lateral displacement of the wheelset , y .
y w

The parameters of importance are:

r ,r = rolling radius of the left and right wheel
L K

5 £ = contact angle of the left and right wheel
L K

d> = roll angle of the wheelset
w

The relations between these parameters and the parameters when the wheelset

is centered on the track are:

V — T*

"L R

2

r + r
L R

2

5 t 6_
L R

2

5 + S
L R

2

d>w

*y.w

A

I yw

11

a w

( C-l)

(C-2)

(C-3)

(C-4)

( C— 5

)

where A = effective conicity of the wheel

r^ = centered (nominal) wheel rolling radius

5 = centered contact angle

A = contact angle difference coefficient

a = half of wheelset contact distance

a
ll

= wheelset roll coefficient

The assumption of a linearly profiled wheel is usually quite good in

the tread region. When the wheelset lateral displacement is such that the

C-3



rail contacts the flange, there is a sudden jump in the wheel rolling radius

and contact angle which is neglected in this analysis.

C . 3 Wheel/Rail Forces and Moments

The nature of contact between steel wheel and steel rail is commonly

known as creep, which is a state between pure rolling and sliding. Many

theories exist to describe this phenomenon, ranging from a simple linear

theory to a nonlinear three-dimensional exact creep theory [31, 33].

The creepages developed at the wheel/rail interface include lateral,

longitudinal and spin creepages, defined respectively as:

(lateral velocity of wheel-lateral velocity of rail)
r _ a t contact point

y nominal velocity

(longitudinal velocity of wheel-loneitudinal velocity of rail)& J at contact

r point
"x nominal velocity

(angular velocity of wheel-angular velocitv of rail)
_ _

at contact point
"sp nominal velocity

The derivation of linearized creepages has been treated in many studies

e.g. [34], with the following result (in the contact planes):

Left Wheel:

^xL
ii C M 1

o

tr

-) - alp]

Sl = |[y + r
L
i - Vip] (C-6)

£ TspL
+w
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Right Wheel :

?xR i-
[v(1 - 4-' +

o

Sr ' + V " v<,] (c' 7)

^spR - ?ri + noV

where SI = ~— is the nominal angular velocity
“ o

V = forward velocity

The above result uses the assumption of small roll, yaw, and contact angles,

and of small wheelset vertical velocity.

The most widely accepted linear creep law is due to Kalker [ 31] , which

relates the creep forces/moment and the creepages according to:

Lateral Creep Force :

F
y

-f
ll

s
y

- f ?
12'sp

(C— 8)

Longitudinal Creep Force :

F
x

-f
33

s
x

(C-9)

Spin Creep Moment:

M
z

= f
12^y

- f 99 £22 sp
(C-10)

where fn = lateral creep coefficient

f
12

= lateral/spin creep coefficient

f
22

= spin creep coefficient

f
33

= longitudinal creep coefficient

The total lateral creep force consists of a lateral creepage component

which is related to the: wheelset yaw angle, and a lateral/spin component that

is a function of the contact angle.

C-5



The creep coefficients are functions of the normal load N, given bv the

following relations:

f
11

(C-ll)

f
22

f
33

where f.. are the nominal values computed for the nominal normal load Nu N
1N

while f.. are the values for normal load N.
ij

The linearized creep theory does not consider the fact that the magnitude

of the resultant creep force is physically limited by the adhesion limit uN

,

where y is the coefficient of friction. However, for operation in the tread

region of the wheel, the magnitude of the resultant creep force is usually

less than the friction force yN, justifying the use of the linearized creep

theory in the model.

The other force acting at the wheel/rail interface is the normal force,

which can be resolved into vertical and horizontal components. The horizontal

component is sometimes referred to as the lateral "gravitational stiffness

force". The gravitational stiffness forces of the two wheels create a net

yaw moment on the wheelset. The linearized expressions for the gravitational

stiffness force and the resulting yaw moment are, respectively [35]:
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( C— 1 2

)

F
g

T
g

aN6 ip

o wi
(C-13)

where N axle load

th
lateral displacement of the i wheelset

, . th ,yaw ot the 1 wheelset

The vertical component of the normal force does not enter the lateral or yaw

equations of motion. The model assumes constant wheel/rail loads.

C . 4 Suspensions

the stability analysis the primary suspension is assumed to be linear parallel

spring/damper combinations for both the lateral and the longitudinal

suspensions. Since primary suspensions are generally rubber chevrons or

donuts the damping is assumed to be a fixed ratio of the spring constant. In

general the primary suspension damping forces are negligible when compared

to the wheel/rail friction damping forces but they are included for complete-

suspensions, between the carbody and the trucks, are modelled as linear

parallel sprine/damper combinations. The lateral suspension is generally

achieved by the shear properties of the vertical airbag or coiled spring

group as well as possible lateral hydraulic dampers. A possible physical

arrangement for the secondary yaw suspension is shown in Figure C.2. For the

The primary suspension connects the axle to the truck frame. For

ness

.

C . 4 .

2

Secondary Suspension

For the stability analysis the lateral and yaw secondary

C-7



Figure C . 2 Physical Arrangement of the Secondary Yaw
Suspension
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stability analysis it is assumed that the bolster has not broken away with

respect to the friction pads of the centerplate and thus the yaw stiffness is

obtained by the compressed bushings in the anchor rods.

C . 5 Equations of Motion

The linearized equations of motion for the six degree of freedom

conventional truck model have been derived previously in the literature [ 35]

.

In the derivation (not presented here) the contributions to the generalized

forces due to the action of the steering laws are derived in the generalized

coordinates similar to those used by Wickens. These generalized forces are

then transformed into the physical coordinates. In this section the complete

equations for a conventional truck are listed. The equations of motion for

steered trucks include additional terms due to steering linkages. These are

derived in Appendix D.

As mentioned in Section C.l the degrees of freedom in the physical

coordinates for a truck are the lateral and yaw motions of the two wheelsets

and of the truck frame. The degrees of freedom in the generalized

coordinates are:

Yi + y
2

y
l

' y
2

h + h
h - *2

equal lateral displacements of the wheelsets

equal and opposite lateral displacements of the wheelsets

equal yaw displacements of the wheelsets

equal and opposite yaw displacements of the wheelsets

lateral displacement of the truck frame

yaw displacement of the truck frame

These are shown in Figure C.3.
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Track Centerline

Figure C.3 Generalized Coordinates of the Generic Truck
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The linearized equations for the 6 DOF conventional truck stability model

follow:

Truck Frame Equations

M_y_ = 2k y , + 2C y + 2k y 0 + 2C y _ - [4k + 2k ]yT 7T py wl py wl py w2 py w2 py sy ^T

- [4C + 2C ]y
PY sy T

(014)

*
* 0 o

T ip^ = 2bk y . + 2bC y . + 2d k ip . + 2d C iL - 2bk y .
Tz T py wl py wl p px wl p pxrwl py w2

- 2bC y _ + 2d
2
k iP „ + 2d

2
C ijj . - [4b

2
k + 4d

2
k

py w2 p px w/ p px w 2 py p px

+ k . - [4b C + 4d
2
C + C ,

]i|;

sip T py p px sip T
(C-15)

M v .
= F +F.+F+F.

w J wi cr si g j
(C-16)

I ip .
= T +T.+T + T

.

wz wi cr si g j
(.017)

where F = net lateral force on wheelset due to creepages
cr

F .

si
net lateral force on wheelset i due to primary lateral
suspension elements

lateral force on wheelset due to lateral gravitational
stiffness

F.
J

lateral force on wheelset due to gyroscopic effect of

the wheelset

T = net yaw moment from creepages
cr

T .

si
net yaw moment applied on wheelset i by the primary
suspension elements

Oil



T = yaw moment contribution from gravitational stiffness

T. = yaw moment contribution from gyroscopic effect of the
wheelset

.

The above equations are applicable to both wheelsets, with the corresponding

values of forces and moments.

The suspension forces and moments are:

T
si

T
s2

2k
py

(y
T

+ b
*T ~ V + 2C

py
(yT

+ blh ' ywl>

2kpy(y
T

- W
T - yw2

) + 2c
py

(y
T

- bi
T - yu2 )

2 d
2
k (*_-*,)+ 2d

2
c (’l - i ,)

p px T wl p px T wl

2d
2
k (ip - ip ) + 2d

2
C (i - Ip J

p px T w2 p px T w2

(C-18)

(C-19)

(C-20)

(C-21)

The creep, gravitational and gyroscopic forces and moments are [35]:

F
cr

-2fu (-
Wl

- Ip .) +
Wl

2f
12

A

ar wi

2f

~V
12

wi
(C-22)

F
g

F.
J

T
cr

—(a + A)v .

a 11 wi

V I a
wy 11 •
l ^ _

ar wi

2 f ( y .
+ —— ip

. )
-

33 r wi V wi
o

22
$wi

2f AX O O

•2f, 'i .
+ — y .

12 wi ar wi

(C-23)

(C—24)

(C-25)
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(C-26)T = aN6 $ .

g o wi

V I a
wy II

ar ywi

where I is the wheelset pitch moment of inertia
wy

and where,

ywl

w2

py

py

sy

sy

Tz

wl

w2

px

px

truck frame mass

lateral displacement of truck frame c.g.

lateral displacement of the leading wheelset c.g.

lateral displacement of the trailing wheelset c.g.

primary lateral stiffness

primary lateral damping

secondary lateral stiffness

secondary lateral damping

truck frame yaw moment of inertia

yaw of truck frame

yaw of the leading wheelset

yaw of the trailing wheelset

primary longitudinal stiffness

primary longitudinal damping

k
g^

= secondary yaw stiffness

"si/

)

= secondary yaw damping

(C-27)
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APPENDIX D

DERIVATION OF ADDITIONAL TERMS DUE TO STEERING LINKAGES

The generalized forces in the physical coordinates due to the action of

the steering linkages in Figure 2.10 are derived in this Appendix. These

generalized forces can be written in matrix form, which is equivalent to the

negative of the stiffness matrix:

For generality, the self-steering radial truck model is allowed to have

dampers in parallel with all stiffnesses to accommodate interaxle damping

although in this study all interaxle damping is set to zero. The contribu-

tion to the generalized forces by these dampers is found by replacing

stiffnesses of all the terms without steering gains in the vector F r with—f s

damping constants, and the degrees of freedom by their derivatives. This

contribution can also be written in matrix form:

F.—ts (D-l)

where is the vector of generalized force due to the steering linkages

,

as defined in equations (D-20) through (D-33)

is the stiffness matrix contribution from the steering linkages

is the vector of position degrees of freedom

(D-2)

where F' is the vector of damper forces, as defined in equations~ -1-0 L lie V tLUUl O
3

(D-34) to (D-45)

_C
f

is the damping matrix contribution from the interaxle
connection (for self steering radial truck only)

_v is the velocity vector in the direction of the degrees

of freedom

D-l



The equations of motion of the 6 DOF generic truck model are obtained

by adding the additional terms due to the steering linkages to the equations

of motion of the truck and wheelsets of a conventional vehicle.

To derive the contribution of the forced steering linkages to the

stiffness matrix, the steering laws are rewritten and expressed in the

generalized coordinates:

* G
?
+G

b
a^ = a^

2
= G

3
(y

1
+y

2
) ± —"g— ^y

i
-3V — ( G

i
+(V

-2G_yT + (2G, -2G -2G )i|) + (2G.+2G_+2 G.)ip (D-3)
3 1 — 4 5 6 T 124c

A
y;L

= Ay
2

= ^h
1
+H

3
)

^yi
+y

2
)+2(H2"H

3
)y

T
_2(H

l
+H

2
)y

c
(D~ 4)

With the assumption that the linkages have no inertia or damping, energy

is conserved and the linkages can be treated as a transformer with Aij; or Ay

as the modulus. This technique has been used in writing the back reaction

forces and moments in the directions which activate Alp and Ay.

First we consider the contribution of Ai
p^ and k^

2
only, in the

generalized coordinates as discussed in Section 2. 3. 1.4. The derivation for

the contribution of Aip^ and k^ is analogous, except for a few terms as

discussed below.

Because Ai^ is positive in the direction of positive (ip^-ip^) , a Aip^

~i'
2

) •

Deflecting the spring in the direction of Op^-ip^) also creates a reaction

equal to -k^ 0 x(^^-^ 9 ) . Thus the total moment in the k^
2

spring is:

•k

The subscripts 1 and 2 refer to the leading and trailing wheelset
respectively, of either the leading or trailing truck.

offset creates a moment k^
9
x Aip in the spring k,

2
in the direction of (ip^
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M M
Alp

k
b2

AA -WV (D-5)

This moment has a back reaction in every direction that activates All)

according to the steering law. For example, the back reaction in the direc-

tion (y^+y 9 ) is derived as follows:

A displacement in the (y^y^) direction causes a displacement in the Alp

or the (ip^-^) direction equal to G
3
(y^H^) to generate a moment in the

k
^2

spring. The force in the (y^i^) direction is given by the effective

transformer modulus (G^ in this case) times the moment :

F
yl+v 2

G
3
M
A^>

(D- 6 )

The sign is negative because of the assumption that energy is conserved in

the linkages, so that the output energy is the negative of the input energy.

Similarly the back reaction forces and moments in the other direction are:

- G
?
+G

b
F = -4 2__ m
yl-y2 b Alp

(D-7)

M,
, ,

= + (G.+G,)M.,
ipj+ip2 1 5 Alp

(D-8)

F m = 2G„M a .

yT 3 Alp
(D-9)

M. = +C2G. - 2G - 2G,)M.
ip

T
456 Aip

(D-10)

M
<P.

= ±(2Gl + 2G
2
+ 2G

4
)M^ (D-U)

The subscript on the force or moments denotes the direction in which the

particular force or moment is acting.
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The forces and moments due to Aip n and k are similar to those due to A\p.
2 b j 1

and except for the following additional effect due to the interconnection

between the truck and the wheelset:

M
lP1

+lP2

+ 2 k
b3^T

(D-12)

M, 2 ~ 4 (D-13)

Similarly, the contribution of Ay^ and k
g9

is derived by first writing

the force F. = -F . „ caused by the offset Ay., and by the reaction to
Ay vl-y2 1

deflection in the (y^-y 9 ) direction

F
iy

= ~ F
yl-y2

= Ay
l
k
S 2

+ k
S 2

(yry
2

) ' b k
s2

(,W (D' 14)

The back reaction forces and moments are derived using the same argument

as before, given by:

*), +*,
= b Ay

l
k
s2

+ b k
s2

(yry
2
) - 1,2 k

s2
(W (D-15)

F
,

= - (H +H„) F.
y
1
+y

2
1 3 Ay

F
ym

-2(H2-H
3
)F

4yJ T

F = 2(H
1
+H 9

)F,
y 1 2 Ay

(D-16)

(D-17)

(D-18)

The contribution of Ay„ and k „ are similar, with the additional effect due
2 s3

to the interconnection between the truck and the wheelset:

F
y1+y

2

= -k
s3

(y
l
+y

2
) + bk

S 3
( 'i

'l

_
'

i'2 ) + 2 k
s3yT

(D‘19)

\-U,,
= bk

s3
Cy

l
+y

2
) - b k

s3
(W ' 2bk

s3
y
T

x 2

(D-20)
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The total effect of Aip^, A^p^, Ay^ and Ay
2

is found by substituting

equation (D-3) into equations (D-5) through (D-ll) and equation (D-4) into

equations (D-14) through (D-18) , and combining the results together. These

generalized forces are expressed in the generalized coordinates. Transforming

them into the physical coordinates the following results are obtained, with

expressions for the front and rear trucks written separately:

F

+2(H
1
+H_)(H

1
+H.+l)(k -+k _)y12 13 s2 sis2 s3

J
c

+ (2G
1
+ 2G

2
+ 2G

4
)(G

3
+ -^>(^2 + k

b3
)*

c
(D-22)
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The contributions to the generalized forces by the dampers in parallel

with the interaxle stiffnesses (for self-steering radial trucks) are found

by replacing stiffnesses of all the terms without the steering gains in

equation (D-22) to (D-35) with damping constants, and the degrees of freedom

by their derivatives. These damping forces are:
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APPENDIX E

LINEARIZED EQUATIONS FOR THE 15 DOF STABILITY MODEL
(CONVENTIONAL TRUCK)

The 6 DOF truck stability model developed for the conventional truck in

*
Appendix C and extended to the generic truck in Appendix D can be used to

represent a truck quite accurately, provided the carbody motions are not

significant in the speed range of interest. When the carbody motions become

significant, the model has to be extended to include both trucks and the

carbody to be able to represent all the significant modes. This extension

increases the degrees of freedom of the model from six to 15. Figure E.l

shows the degrees of freedom and Figure E.2 shows the suspension system for

conventional trucks.

The 15 second order linear differential equations of motion for a

conventional vehicle are included in this Appendix [ 35] . The equations are

based on the assumptions that the vehicle runs at constant speed on rigid,

tangent, level track and that no external forces such as wind or coupling

loads exist. These equations can be written in matrix form as:

M y + [C + C ]y + [K +K ]y = 0 (E-l)

where y_ is the vector of position degrees of freedom

M is the inertia matrix

K and C are the suspension stiffness and damping matrices,

respectively

K and C are the stiffness and damping matrices resulting
from the wheel/rail interaction

To describe the generic truck with the 15 DOF analysis requires that

additional terms from Appendix D representing the steering linkages be

The standard self- and forced-steered trucks are special cases of the generic

truck.
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Figure E.2 Model of Conventional Rail Vehicle
Suspension System
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appropriately added to the equations given in this Appendix E.

Despite the advantage of being able to represent all the important

modes, the 15 DOF full vehicle model has some disadvantages such as:

- increased complexity, which makes it difficult to solve analytically.

- longer computational time

For these reasons, the 6 DOF model is used in the parametric studies whenever

it is deemed appropriate.

The lateral equations of motion of a conventional rail vehicle are

presented here. The state variables of the 15 DOF full vehicle model are

defined in Table E.l and are shown in Figure E.l. The model assumes the

following

:

- the vehicle runs at constant speed on rigid, tangent, level track

- no external forces as wind or coupling loads exist

- small displacements

- no flange contact

The fifteen linear differential equations of motion are:

E-4



Table E.l Vehicle Model State Definitions

State Unit Definition

ywl
ft Lateral position of c.g., leading wheelset of the

leading truck

ib ,
wl

radian Yaw of leading wheelset of the leading truck

yw2
ft Lateral position of c.g., trailing wheelset of the

leading truck

^w2
radian Yaw of trailing wheelset of the leading truck

ytl
ft Lateral position of leading truck c.g.

*tl
radian Yaw of leading truck

yw3
ft Lateral position of c.g., leading wheelset of the

trailing truck

^w3
radian Yaw of leading wheelset of the trailing truck

ywA
ft Lateral position of c.g., trailing wheelset of the

trailing truck

radian Yaw of trailing wheelset of the trailing truck

yt2
ft Lateral position of trailing truck c.g.

*t2
radian Yaw of trailing truck

y c
ft Lateral position of carbody c.g.

radian Yaw of carbody

<i>
radian Roll of carbody
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APPENDIX F

STEADY-STATE CURVING EQUATIONS FOR A SINGLE WHEELSET

This Appendix develops the nonlinear curving models used to compute

curve negotiation performance indices. Fully nonlinear models are needed

since nearly all vehicles experience flange contact and creep force saturation

on the majority of transit property curves.

As discussed in Section 2.1.2 the primary curving performance index is

the work generated by the flanging or high rail wheel. This index is related

to the wear rate of the wheel.

F. 1 Single Wheelset Model

This section presents the equation formulation for both single and two

point contact situations on an individual wheel.

The basic element of the rail vehicle steering and support system is the

wheelset. The contact and friction mechanisms which develop at the wheel/rail

interfaces have a dominant effect on vehicle curving behavior. The curving

performance of a vehicle is a direct function of the ability of its wheelsets

to negotiate a curve.

F . 1 . 1 Coordinate Systems

A free wheelset negotiating a constant radius curve is exposed to

track curvature and lateral force unbalance inputs. The track curvature is

given by 1/R, where R is the curve radius assumed constant. The lateral

force unbalance is usually expressed in terms of cant deficiency, (J)^, defined

2
as the angle between (1) the resultant of the "centrifugal force", mV /R, and

the weight, mg, and (2) the normal into the rail plane. When <f>^=0 , a

condition of "balanced running" is achieved for which the components of

F-l



centrifugal force and weight parallel to the rail plane cancel each other.

For comfort and safety the maximum cant deficiency loads are limited to low

levels in the U. S. (about 6° of inboard unbalance and 3° of outboard

unbalance [30]). Track curvature is therefore considered the dominant

curving input

.

Assuming continuous wheel/ rail contact, a wheelset negotiating a

constant radius track at constant speed has two independent degrees of

freedom: lateral and yaw displacements, y^ and ip , respectively. The

convention for positive y^ and i]j displacements is shown in Figure 2.1. In

this report, right handed curves are considered, and thus positive y is
w

associated with displacements toward the left rail. Track and wheelset

coordinate systems are introduced in Figure F.l. Contact angles (6 ,6 )

,

rolling radii (r ,r ), and wheelset roll angle relative to the track plane
L K

((f) ) are defined in Figure F.2.
w

F . 1 . 2 Wheel/Rail Profile Geometry

For a wheelset which never loses contact with the rails, the

rolling radii, contact angles, and wheelset roll angle are functions of the

net wheelset-rail lateral excursion for a given wheel/rail profile. These

functions (rolling radii and contact angles) are shown in Figure F.3 for a

typical new wheel on worn rail profile and in Figure F.4 for a Heumann wheel

on worn rail, both for standard gage rails [22]. For the new wheel profile,

the flange clearance is y^
= 0.32 in. When the wheelset lateral excursion

minus the rail lateral excursion is less than flange clearance, tread contact

occurs. Flanging at the left wheel occurs when the wheelset lateral

excursion with respect to the left rail equals or exceeds flange clearance.
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Note that for severe flanging the contact angle approaches 65°.

The rolling radii, contact angles, and roll angle are wheel/ rail

geometric constraint variables since they are functions of the net wheelset-

rail lateral displacement. These variables indicate the nature of wheel/ rail

contact as the wheelset is displaced laterally. If the rolling radii

and contact angles are single valued functions of the lateral excursion,

single point contact occurs at both wheels for all displacements. This

represents the continuous single-point contact approximation, shown in

Figures F.3 and F.4. As the wheelset is laterally displaced,

the left whee] shifts from tread to flange contact, while the inner wheel

maintains tread contact. For other profiles (see Figures F.3) the left rolling

radius and left contact angle have discontinuous jumps at net

lateral excursions equal to flange clearance indicating that

multiple wheel/rail contact points exist at the flanging (left) wheel.

Single-point tread contact occurs for net lateral excursions less than flange

clearance, corresponding to the situation drawn in Figure F.5a. For net

lateral excursions equal to flange clearance, it is assumed that two-point

contact occurs at the flanging wheel depicted in Figure F.5b, where the rail

head is shown to contact simultaneously both the tread and flange of the

flanging (outer) wheel. The inner wheel maintains single-point tread contact.

For net lateral excursions larger than flange clearance, a situation

conducive to derailment exists since single-point flange contact occurs at

the flanging wheel (Figure F.5c).

Some profiles are designed to achieve single-point wheel/rail contact

for all realistic values of lateral displacement. This is the case for the

Heumann wheel profile of Figures F.4. Many new wheel profiles, such as the
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AAR 1 in 20, contact the rails at multiple points during normal use.

Naturally, wheel (and rail) profiles change with time due to wear during

service life.

F . 1 . 3 Wheelset Equilibrium Conditions

For a wheelset negotiating a curve, a difference occurs between

the actual velocity and the velocity in pure rolling of the contact points

resulting in partial slip or creepage of the wheels relative to the rails.

Normal loads acting on a slipping wheelset result in the generation of creep

forces. Due to the action of creep, the lateral and yaw degrees of freedom

of a wheelset are coupled.

Each point of wheel/rail contact is a patch of finite area, where a

state between pure-roll and pure-slip exists. During the last ten years

there has been a significant improvement in the understanding of this friction

mechanism and in computational programs to predict it. Kalker [31] developed

linear, simplified nonlinear, and exact nonlinear theories and programs. In

*
this paper a "heuristic" [34] creep force model is used which is computa-

tionally fast and reasonably accurate. The creep forces and moment at each

contact patch can be resolved into longitudinal, lateral, and vertical

components in the track frame.

Whereas creep forces act in the plane of each contact patch, normal

forces act perpendicular to the plane. These forces can be resolved into

lateral and vertical components in the track frame. For single-point wheel /rail

contact at the left and right wheels, the resolved normal force components

from Figure F.2 are:

*
See Appendix G.
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The sum of the lateral components of the normal force is sometimes referred

to as the "gravitational stiffness force".

The static equilibrium conditions for a wheelset negotiating a constant

radius curve can be expressed by eight algebraic equations, six for the

wheelset and one for each rail. The rail is assumed to only have a lateral

degree of freedom (Figure F.6), i.e., overturning motion has been neglected.

The equilibrium equations are

>|
0 (F-2)

ZF
yT

= 0 (F-3)

ZF = 0 (F-4)

l

Z
T

Wheelset /

ZM
X
w

= 0 (F-5)

ZM
V
w

= 0 (F-6)

J ZM
z
w

= 0 (F-7)

Left Rail: ZF
yT

= 0 (F-8)

Right Rail: ZF = 0 (F-9)
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where external and inertial forces /moments are summed on the left. Equations

(F-2) - (F-4) are wheelset force equilibrium equations, (F-5) - (F-7) are

wheelset moment equations and (F-8) - (F-9) are the left and right rail

lateral force equations.

In steady state curving the rails can be modeled approximately as linear

springs as shown in Figure F.6. Each rail displaces laterally a distance

related to the net lateral wheel force, i.e.,

yrail

Yrail
R

(F-10)

(F-ll)

where F and F are the net lateral wheel forces and are composed of creep

and normal forces. The typical range of effective lateral rail stiffness

values is 25,000 lb/in to 80,000 lb/in [36].

Two nonlinear models have been developed to predict the steady-state

curving behavior of a single wheelset. Both models assume that the wheelset

is in force and moment static equilibrium. The difference between the models

is that one assumes that single-point wheel/ rail contact occurs at both

wheels of the wheelset; the other model assumes that two-point tread-flange

contact occurs at the outer wheel and single-point tread contact occurs at

the inner wheel of the wheelset. The following two sections formulate the

equilibrium conditions for these two models.

F . 1 . 3 . 1 Single-Point Contact

A free-body diagram of a wheelset with single-point

contact at each wheel/rail interface is shown in Figure F.7. All forces and
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moments are resolved in track coordinates, except for the wheelset drive/brake

torque, T , which acts about the spin axis. This drive/brake torque
d

can be considered to be a specified input. Other inputs are: (1) the vertical

loads on the left and right wheels, V and V , respectively, acting in the
L K

negative z
^

direction, (2) the thrust or drawbar force, F , acting at the

wheelset center of mass in the x^ direction, (3) the wheelset lateral force,

F.. , acting in the track plane in the y direction, and (A) the wheelset
X cl L 1

yaw moment, M , acting about the zTT axis. Figure F.8 shows a rear view of
yaw W

the wheel and rail force equilibrium.

Assuming single-point contact at the left and right wheel /rail interfaces

and small roll and yaw angles, the following steady-state equilibrium con-

ditions apply:

WHEELSET

LONGITUDINAL

ZF = 0

LATERAL
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VERTICAL

ZF = 0
Z
T

ROLL
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w
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YAW

EM = 0
z
w

(F
CXL

F
CXR

)a K { <F
NYL

+ F
CYL

)<a ~ r
L
tan(l5

L
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(F
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CZL
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CZR
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LATERAL LEFT

RAIL

EF = 0 = F„„, + F„„, + F
V
'T

NYL CYL rail.
(F-18)

LATERAL RIGHT

EF = 0 = F + F +F
NYR CYR rail

R
(F-19)

Here the lateral rail reaction forces, F ,, and F , are
rail rail

L K

functions of v - y . ,
and y - y , respectively,

w rail w 'rail
L K

Equations (F-12) - (F-19) represent eight coupled nonlinear algebraic

equations. Assuming , V^, F^^ , and M
^

are known, the equations can

be solved for the following eight independent variables: F
, y^, F^.^

,

f
, El, ip

, y , y . These variables can be used to calculate all
iSlZK W r3.ll. 1*311

L R
wheel/rail forces. The contact angle and roll angle are specified since
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V - v and y - y are known, and thus the resultant normal forces'w ran w rail
L K

and the lateral components of the normal forces can be calculated from F
NZL

and F^
zr

. The creep forces at the left and right contact patches can be

computed since the creepages (which are functions of y - y . „ , yw 7 rail w
L

y , ft, and ijj ) and the normal forces are known. Equations (F-12) -
rail T,T

R
w

(F-19) can alternatively be solved for the following variables if V , V
,

L R

y , and ij; are specified: F , F. . F
XT__ , F

, ft , M , Y .. , y .. .

w w r
t lat NZL NZR yaw rail 7 rail

L R
Later in this Appendix, the numerical technique required to solve for this

latter set of unknowns is described. Finally, for the case of rigid rails,

y ^ = yrail = 0 and the wheelset equilibrium equations, equations
L R

(F-12) - (F-17) decouple from the lateral rail force equations, equations

(F-18) and (F-19), leaving a system of six equations with six unknowns.

The thrust in the longitudinal track direction defines the drawbar

force, F , which must be applied to the wheelset for it to traverse the curve

in steady-state. The lateral force, F^
at

_, is provided by suspension and body

(cant deficiency) forces. It equilibrates the lateral components of creep

and normal forces to yield static equilibrium in the lateral direction.

Suspension forces also give rise to the yaw moment, My
aw > which balances the

moments in the yaw direction due to creep and normal forces. The vertical

loads whch act on the left and right wheels, V and V , respectively, are

provided by suspension and body forces. The sum and difference of the

vertical and roll equations yield the following equations for the vertical

loads

:

V = F + F
L NZL CZL

(F-20)

V + F + F
R NZR CZR

(F-21)
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The rotational velocity of the wheelset is determined by the spin equation,

which balances the moments about the wheelset spin (bearing) axis. The

wheelset drive/brake torque, T^, is balanced principally by longitudinal

creep forces.

F . 1 . 3 . 2 Two-Point Contact

The wheelset model appropriate for two-point contact

analysis assumes simultaneous tread and flange contact at the outer (flanging)

wheel and single-point contact at the inner wheel. The lateral displacement

of the wheelset with respect to the left rail is fixed at flange clearance

and thus the contact geometry of the tread and flange contact points at the

left wheel is fixed even though the forces may vary. Figure F.9 shows the

free-body wheel and rail forces for two-point contact. The steady-state

force and moment equilibrium equations for the case of two-point contact

are similar to equations (F-12) - (F-19) with new terms to account for the

additional contact point. The two-point contact formulation is statically

determinate due to the facts that (1) the net lateral excursion at the left

wheel is constrained to equal the flange clearance, and (2) the normal

forces have components in the lateral as well as vertical directions. This

implies that the contact geometry at the tread and flange contact points of

the flanging wheel is known and that the normal force at the flange contact

point can be determined from the lateral force balance equation. The

complete equations are shown below:

WHEELSET

LONGITUDINAL

F = 0 = F + F + F + F
CXLT CXLF CXR t

(F-22)
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REAR VIEW

YR

Rail Forces

Figure F.9 Wheel and Rail Forces for Two-Point Contact
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'
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RAIL

LATERAL LEFT

ZF — 0 = F 4- F + F 4- F 4- F
v_ NYLT CYLT NYLF CYLF rail.

(F-28)

LATERAL RIGHT

IF = 0 = F 4- F + F
yT NYR CYR rail.

1 K
( F— 2 9

)

Equations (F-22) - (F-29) represent eight coupled nonlinear algebraic

equations. In this case the relative wheelset excursion (y -y „ ) is fixed
w 'rail

at the flange clearance value (y r ) . Assuming VT , V. F,
, and M are

fc L R lat yaw

known, the equations can be solved for: F , y ,
F , F , F , ip

,

t w NZLT NZLF NZR w

v . Alternatively, if V , V. y and w are specified, the equations can
'rail L R w w r n

K

be solved for: F , F , F , F.
t lat’ NZLT NZLF’ NZR

F , Q, M
, y . For the case

yaw ' rail
R

of rigid rails the wheelset equations decouple from the rail force equations.

The wheelset lateral excursion, y^, equals the flange clearance, y£ c
- If V >

V , F , and are known, the following variables can be determined from
K lat w

equations (F-22) - (F-27) : F^ F
NZLT , F

NZLF , F
NZR , u, M

yaw
*

The two-point contact model is used to determine the distribution of

wheel/rail forces acting at the tread and flange contact points at the

flanging wheel. For a wheelset negotiating a shallow curve corresponding to

"mild" flanging, the forces at the tread contact point dominate. With

tighter curves more severe flanging develops, and the wheel /rail forces

gradually grow at the flange contact point and decrease at the tread contact

point. This tradeoff in forces from tread to flange continues with degree

curve until all forces act at the flange contact patch. This would occur for

a wheelset negotiating an extremely tight curve, and would indicate the danger
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of derailment as the outer wheel rides high up against the flange. The

single-point contact model is appropriate once contact occurs at only the

flange contact patch.

A useful relationship between the work index, W^, defined in Table 2 . 1 ,

and the external forces and moments on the wheelset can be derived by

manipulating the equilibrium equations or by writing a power balance

equation , i . e .

,

P. = P
in out

(F-30)

P
.m V [F

t

M
yaw
R

+ Pl
d

] (F-31)

P
out

-VW = -V HF £ +F F +M £
1 L,R L

CPX

.

s
x . CPY.^y. CP . sp

.

11 l i l i

(F-32)

Noting from equations (F-12)

(F-30) yields:

W
1

and (F-20) that F^

+
M
_Zaw
R

ph

- L?R
F
CXi’

equatlon

(F-33)

Equation (F-33) is a useful check to ensure that a correct numerical

solution of the equilibrium equations has been obtained.

In the full vehicle formulation the wheelset yaw moment is not an

external moment and thus equation (F-33) reduces to that obtained in [ 9 ]

,

i.e. ,

W, = S F .
- oT (F-34)

1 T _ cxi d
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F.1.4 Numerical Methods

The numerical solution procedures used to solve the coupled

equilibrium equations of the single-point contact and two-pcint contact

wheelset models are discussed in the following sections. The procedures

assume that the wheelset lateral excursion and angle of attack, as well as

the vertical loads acting on the left and right wheels are known. By solving

the single-point equations, equilibrium values of lateral force and yaw

moment are determined as functions of lateral excursion and angle of attack.

For lateral excursions less than and larger than flange clearance this model

is appropriate. For some profiles, this model is still appropriate at

flange clearance, as was discussed above in Section F.1.2. For profiles with

discontinuous jumps in the rolling radius-displacement and contact angle-

displacement functions at flange clearance, the two-point contact model is

applicable since it represents the fact that distinct tread and flange contact

points exist simultaneously. Solution of the two-point equations gives the

equilibrium yaw moment as a function of lateral force and angle of attack.

F . 1 . 4 . 1 Single-Point Contact

For the case of rigid rails, the wheelset equilibrium

conditions are specified by equations (F-12) through (F-17)
, and represent

nonlinear algebraic equations coupled due to the fact that the normal and

creep forces depend upon each other. First, equations (F-16) , (F-20) and

(F-21) are solved simultaneously for the wheel/ rail contact forces and

moments. Then, equations (F-12), (F-13) and (F-17) are used to define the

drawbar force, the lateral force, and the yaw moment, respectively, needed

to maintain the wheelset in equilibrium.
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Two nested iteration loops are used to solve simultaneously the spin,

vertical and roll equations. The inner loop balances the torque about the

wheelset rolling axis by adjusting the spin perturbation rate, (3, to satisfy

the spin equation. The outer loop adjusts the vertical component of creep

force at each wheel to satisfy the sum and difference of the vertical and

roll equations. This procedure is continued until vertical force convergence

is achieved, as outlined in the flow chart in Figure F.10 and gives the

equilibrium values of all contact forces and moments. The longitudinal,

lateral, and yaw equations are then applied to solve for the equilibrium

values of F , F n , and M , respectivelv

.

t lat yaw’ F

A similar routine to solve the coupled wheelset equilibrium equations

was developed by Sweet and Sivak [ A ] in which the two nested iteration loops

are reversed. It should be noted that the creep forces are quite sensitive

to small changes in the spin perturbation rate, $•

To accommodate rail flexibility, the solution technique is to calculate

the net lateral wheel force at each wheel assuming a rigid rail model. Then

the lateral rail displacement at each wheel is calculated according to

equations (F-10) and (F-ll) and used to compute the effective lateral

v - v ). These lateral excursions
- w * rail

R

are used to update the wheel/ rail contact geometry at the left and right

contact points. The net lateral wheel force at each wheel is then computed,

and the process is continued until convergence is achieved. Even with "soft”

rail, convergence occurs rapidly, within several iterations.

F . 1 . 4 . 2 Two-Point Contact

For some profiles, two-point contact occurs at the outer

^left') wheel when the net lateral excursion equals the flange clearance. To

excursion at each wheel (y - v ,w • rail



Figure F.l° Flow Chart for Wheelset Equilibrium with Rigid Rails:

Single-Point Contact Model

INPUT: y ,\p , Vr , V ,T , R, a , u , r (y ) ,<$ . (v ,) ,<j) (y ),
“ w w L R a l w l w w w
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F„ = F = 0
CZL ’ X

:
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'
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•
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.

CALCULATE CREEPAGES : C's
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,
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determine the wheel/rail forces and moments at the three contact patches,

assuming rigid rails, four coupled equilibrium equations must be solved

simultaneously: the spin, vertical, roll, and lateral equations. The lateral

equation is then used to determine the equilibrium values of the contact

forces and moments. This implies that the wheelset lateral force, derived

from body and suspension forces, must be known. Once a solution to these

coupled equations is determined, the wheelset yaw moment needed to satisfy

yaw equilibrium is calculated from the yaw equation. In a vehicle, this

yaw moment is provided by the suspension forces.

The four coupled equations are solved as before using two nested

iteration loops as shown in Figure F.ll. The inner loop adjusts the spin

perturbation rate, 6, to satisfy the spin equation. The outer loop adjusts

the vertical components of the creep forces at the tread and the flange of

the outer wheel and the tread of the inner wheel to simultaneously satisfy

the lateral equation and the sum and difference of the vertical and roll

equations. Once vertical force convergence is achieved, equilibrium values

of all contact forces and moments are known and the yaw equation is used to

calculate the wheelset yaw moment which must act for equilibrium.

Rail flexibility is accounted for, as before, by solving first for the

net lateral wheel forces assuming rigid rails. Equations (F-10) and (F-ll)

are used to calculate the lateral rail displacements, where F^ = F^^ +

Ft_ „ in equation (F-10). The net lateral excursion at the right, y - y ,TLF ‘ w rail
R

is computed and used to update the right contact geometry. It is assumed that

two-point contact at the left wheel is maintained and thus y - y . , = y,_ .

w rail f

c

The net lateral wheel forces are then computed and the procedure is continued

until convergence occurs.
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Figure F.ll Flow Chart for Wheelset Equilibrium with Rigid Rails:

Two-Point Contact Model
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APPENDIX G

NONLINEAR CREEP FORCE MODEL

The "heuristic" nonlinear creep force model mentioned in the text is a

modified Vermeulen-Johnson [ 33] formulation that includes the effect of spin

creep

.

The creep forces and moments are initially computed using the Kalker

linear theory [31]. At each contact patch, the longitudinal and lateral

components of creep force are:

F
CPX

f
33^x

F
CPY

= _f
ll^y

~ f
12^SP

(G-l)

and the spin creep moment acting normal to the contact patch is:

Mrp ^99^<

*
where E, , E, and E, are the longitudinal, lateral, and spin creepages

,

x y sp

respectively, in contact patch coordinates. The derivation of these creepages

is a complicated application of kinematics [9, 37]. The creepages at the

left and right contact patches are:

r
L
P (G-3)

*R

(G-4)

The creepages are the relative velocities between the wheel and rail at the

contact patch normalized by the nominal forward velocity.
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(G-5)-r p ip sec(6 + d )
L w L w

-r p ip sec(6 + <p )
R w L w

(G-6)

L

-psin(5 + 4> )
- cos (6 t + <p )

L w R L w
(G-7)

(G-8)

where p - — = — 1- - - -
. (For the case of two-point contact at the

o

left wheel, equations (G-3)
,

(G-5) and (G-7) are the creepages at the left

tread and left flange contact patches when the appropriate rolling radii and

contact angles are used) . The derivations of equations (G-3) - (G-8) make

use of the expression for the shift of the contact patch due to ^ . The
w

longitudinal shift of the contact patch is given in [ 5 ]

.

The creep coefficients f
,

f]_
2

’ ^22 anc^ ^33 are funct:'-ons °f the wheel/rail

geometry, material properties, and resulting normal load. They are computed

according to Kalker's linear theory [31], Typically these calculated values

are reduced by 50% to account for discrepancies between field and laboratory

test data due to contaminated rail conditions in the field.

The creep coefficients are functions of the normal load, N, calculated

in the following way:

A r.ii t an ( 6 . +
(J) )

l ' w i — w
(G-9)

x.
X
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N
2/3

fl1 ( N
N

’ fll
N

12

’22

(-r-)f
i2

N N

N
A/3

(G-10)

<—> f
922 ,

N
2/3

= (—-—)
f

33 n
n

“
33
n

where f . . are the nominal values computed for the nominal normal load'N,, and
1]

N
n

f.. are the values for normal load, N.
ij

The magnitude of the resultant creep force cannot exceed the amount of

available adhesion, UN , at the wheel/ rail contact interface. The creep force

saturation is computed according to a modified Vermeulen-Johnson model in

which a saturation coefficient is determined by:

£ =

V

Fl
L %N ;

3 %N ;

K

yN

f
r

tt (-pr
)3

i for f
r

for F’ >3yN
R

(G-ll)

where the unlimited resultant creep force is

F
r

+
V

(F
c

2 2

CPX'
v CPY ; (G-12)
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The saturated creep forces and moment are then given by:

F = eF'
CPX CPX

•p — p-p

'

CPY CPY

M = £M ’

CP CP

(G-13)
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APPENDIX H

STEADY-STATE CURVING FORMULATION FOR HALF CARBODY MODEL

The nonlinear wheelset model developed in Appendix F has been coupled

to the rail vehicle through suspension elements. Two wheelsets are

mounted via primary suspensions to the truck frame which is then attached

via the secondary suspension to the carbody. The generic truck model

developed in Section 2.2.4 is attached to the nonlinear wheelset models of

Appendix F to formulate the nonlinear truck model. In addition to the wheel/rail

nonlinearities described in Appendices F and G the suspension models have been

extended to include nonlinear effects.

H . 1 Haif-Carbody Model

In order to reduce the numerical computations required to solve the

steady-state curving problem a single truck/half carbody model has been

developed. The model is used to solve separately for the front and rear

truck solution. It is shown that a completely coupled full carbody solution

can be obtained by iterating on the carbody yaw angle and secondary suspension

lateral force; however, in general the decoupled solution is accurate due to

the typically small secondary yaw torques.

H . 1 . 1 Degrees of Freedom

Figures H.l and H.2 show the degrees of freedom and vehicle

geometry used in the model. The degrees of freedom used in the decoupled half-

carbody model are:

y (y 3
) • lateral excursion of the lead wheelset of the front

(rear) truck with respect to the track centerline

ip

wi (^ 3
) • yaw displacement of the lead wheelset of the front (rear)

truck with respect to a radial line passing halfway
between the lead and trailing wheelsets. [This angle is

related to the lead wheelset angle of attack, (ip ) , of

Appendices F and G, by ip = (\p )
- b/R].

wl w 1
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1

Figure H.l Curving Model Components and Degrees of Freedom
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Figure H.2 Curving Model, Rear View
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y tl
(y

t2
)

yw2 (yv4 )

K2 %4>

V
' cs

lateral excursion of the front (rear) truck w.r.t.
truck reference position (centered over track at lead
and trailing wheelsets)

yaw displacement of truck w.r.t. radial line passing
halfway between lead and trailing wheelsets.

lateral excursion of the trailing wheelset of the front
(rear) truck w.r.t. track centerline

yaw displacement of the trailing wheelset of the front
(rear) truck w.r.t. radial line^passing halfway between
the lead and trailing wheelsets

lateral displacement of carbody secondary connection
point relative to the truck reference position.

• roll displacement of the carbody w.r.t. track plane.
L,

As shown in Figure H.l the wheelset reference position is centered

laterally on the track centerline, and square with the truck reference

position in yaw. The truck reference position is centered laterally over the

wheelsets at the front and rear wheelsets of the truck. The carbody reference

position is centered laterally over the front and rear trucks at the secondary

connection points. All degrees of freedom are in the track plane.

The model thus has eight degrees of freedom and is designed to represent

a single truck with two wheelsets coupled to a half-carbody . The curving

performance of either the front or the rear truck is computed separately under

the assumption that coupling between the trucks is negligible for practical

(typical) secondary suspensions. The assumption of decoupled trucks can then

be checked as is described below.

When the 'torque between the front truck and the carbody is equal and

opposite to the torque between the rear truck and the carbody, there is no

coupling between the front and rear trucks. The assumption of decoupled trucks

is then valid. However, when the secondary yaw torques between the front and

This angle, ^ , is related to the trailing wheelset angle of attack,

by Kz ’ (v
“

2
+ b/R -

(V 2
’
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rear trucks are not equal and opposite, the resulting coupling between the

front and rear trucks can be solved iteratively. To account for coupling

between the front and rear trucks in the single truck model, the following

relations must be satisfied:

where ip =
c

F
sec-^

T
car

.

1

£
s

Subscripts: 1 = front truck

2 = rear truck

The complete full vehicle (15 DOF) solution can be obtained by iterating on

ip and F in successive runs of the single truck model. This is rarely
c sec

necessary, though, because ip^ and F
^

are usually negligibly small with

regard to coupling between the two trucks.

H . 1 . 2 Primary Suspension

The primary suspension is modelled as a system of nonlinear

(piecewise linear) springs connected in parallel in the lateral and longitudi-

nal directions, and linear springs connected in parallel in the vertical

ip = (y - y )/ 2£
C 'cs^ CS2 S

(H-l)

F = (T + T )/2£
sec^ car^ car^ s

(H-2)

= - F
sec2 sec^

(H-3)

carbody yaw displacement

lateral displacement of carbody at secondary
suspension connection point, ith truck

external lateral force on carbody at secondary
suspension connection point, ith truck

torque acting on carbody, ith truck

half of spacing between trucks
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direction. The arrangement is shown in Figure H.3. The longitudinal and

vertical springs yield effective yaw and roll stiffnesses, respectively.

The lateral stiffness, k , is modelled as a trilinear spring, as shown in
py

Figure H.4 representing a hardening spring. Significantly larger lateral

forces are required to displace the suspension as the lateral stroke

increases. Further, the effect of a "stop" at lateral clearance DY2 can be

represented by making KPY3 much larger than KPY2. The longitudinal stiffness

k , is modelled as a bilinear spring, as depicted in Figure H.5, and also

represents a hardening spring. A "stop" can be modelled by making KPX2 much

larger than KPX1.

To bypass numerical convergence difficulties which can result from a

very soft primary longitudinal suspension, an auxiliary longitudinal

suspension is introduced. This is shown in Figure H.6 where an auxiliary

primary longitudinal suspension k is placed in parallel with the existing
pX3UX

nrimary longitudinal stiffness k and is connected between the wheelset and
px

the truck frame or between the wheelset and ground. An imposed extension

5 in series with a stiff auxiliary stiffness k is used to simulate
aux pxaux

a longitudinal clearance while maintaining a stiff primary suspension. A

solution is obtained when an extension 6 is selected such that all the
aux

force is transmitted through the primary stiffness k and no force is

transmitted through the auxiliary stiffness k . When this occurs the
pxaux

longitudinal suspension is provided solely by the soft longitudinal stiffness

k
px

H . 1 . 3 Secondary Suspension

The truck frame is connected to the carbody through the secondary

suspension system in the lateral, yaw and vertical directions. Connection
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Figure H.3 Primary Suspension Stiffnesses
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Figure H.4 Force-Displacement Characteristic For Primary
Lateral Stiffness Model.

Longitudinal
Force

Figure H.5 Force-Displacement Characteristic for Primary

Longitudinal Stiffness Model.
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Figure H.6 Primary Suspension Arrangement with
Auxiliary Suspension.
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in the longitudinal direction is provided by anchor rods between the carbodv

and each bolster, shown in Figure C.2. Each bolster is fastened to a truck

frame by a center pin so that it can rotate with respect to the truck frame.

With the assumption of rigid anchor rods, each bolster follows the carbody

motion in yaw and the truck motion in the lateral direction.

The secondary suspension model consists of linear springs connected in

parallel in the lateral and vertical directions, two per truck for each

direction. The secondary vertical stiffness k provides roll stiffness

between the truck and the carbody. Because the vertical directions are not

included in the curving model as degrees of freedom, the effect of the

secondary vertical stiffness k is equivalent to a roll spring between the

carbody and each truck frame:

= 2d k (H-4)
roll s sz

In yaw, the secondary suspension consists of anchor rods between the

bolster and carbody which act in series with friction pads between the bolster

and truck frame, as described above. The torque vs. yaw stroke characteristic

resulting from this series arrangement is shown in Figure H.7. The linear

stiffness is the effective yaw stiffness of the anchor rod bushings and

related components. The breakaway torque T results from the Coulomb sliding

force between the friction pads. In the curving analysis it is assumed that

the maximum torque, T , is established between the carbody and the truck frame
B

This torque is maintained regardless of any increase in the relative displace-

ment between the two components.

H . 2 Vehicle Equilibrium Conditions

The vehicle steady-state curving equations are statements of simultaneous

lateral force and yaw moment equilibrium of the wheelsets, truck, and (half)

H-10



Figure H.7 Torque vs. Stroke Characteristic of the

Secondary Yaw Suspension



carbody

.

The following vehicle equilibrium conditions apply:

1 . Lateral Force Equilibrium i

Lead Wheelset
2. Yaw Moment Equilibrium )

3. Lateral Force Equilibrium \

Trailing Wheelset
4. Yaw Moment Equilibrium

)

5. Lateral Force Equilibrium i

Truck
6. Yaw Moment Equilibrium

)

7. Lateral Force Equilibrium 1

8. Yaw Moment Equilibrium > Carbody

9. Roll Moment Equilibrium

Conditions (8) and (9) are decoupled conditions. Condition (8) is related

to the interaction of the front and rear trucks in the analysis of a full

vehicle as expressed in relations (H-l) - (H-3) . Carbody roll is a decoupled

degree of freedom and is discussed in Section H.3.1. Conditions (1) through

(7) are coupled, and represent the set of nonlinear algebraic equations which

must be solved.

The forces and moments acting upon the vehicle can be characterized as

internal arising from suspension and external arising from cant deficiency,

track curvature, forced-steering (from carbody yaw), and imposed wheelset

yaw offsets. Thus, the equilibrium equations can be cast as follows:

K X = B_ (H-5)

where the matrix produce _K X represents a vector of internal suspension

forces and moments and B represents the vector of all external forces and

moments. The elements of the B vector due to cant deficiency and track

curvature are:
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w <t> . + F
w d lat.

= M
yaw^

W
<t>

+ F.
w d lat.

= M
yaw. (H-6)

Vd

= + T t

b
7

F
buff

where F-^
at

and represent the lateral force and yaw moment, respectively,

acting on the leading (i = 1) and trailing (i = 2) wheelsets. For the case

of a wheelset in single-point contact at both the left and right wheels, the

lateral force and yaw moment are calculated as part of the analyses for the

wheel/rail forces (i.e., in the wheelset subroutines). They are both functions

of the track curvature. The sixth element of the 13 vector is the breakaway

torque, T^ . The sign is positive for analysis of the leading (front) truck

and negative for the trailing (rear) truck.

The matrix product K X is composed of a stiffness matrix K due to primary

and secondary suspensions, and a geometry state vector X. When nonlinear

suspension representations are used K is a function of the vehicle displace-

ment vector X. The elements of X are:
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ywl

X_ = 1p.wl

x 0 = y.w2

X, = l/j

w2
(H-7)

x c = y n

x, = h

X 7 = y
7 cs

The seventh element represents the lateral excursion of the carbody at the

secondary connection point.

For the case of the leading wheelset in two-point contact at the

flanging (left) wheel, X.. = y is fixed at the flange clearance (assuming
i wl

rigid rails) and the lateral force, F, , becomes a state variable. The two-c lat
1

point contact wheelset subroutine requires F^^ as an input.

To account for initial wheelset misalignments, equation (H-5) can be

modified to reflect the new "resting" (zero suspension force) state of the

suspensions. The equilibrium equations can be written as

K (X - X ) = B— — —

m

(H-8)

where X represents a misaligned geometry state vector. For radial and
—

m

lateral misalignment of each wheelset, the elements of the X^ vector are:
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>- = Y
Ira wlm

X0 = ip .

2m wlm

X_ = Y
3m w2m (H-9)

X, = ijj
04m w2m

X
5m

A
6ra

X
7m

°

where the first four elements are the initial lateral and yaw misalignments

of the leading and trailing wheelsets, shown in Figure H.8.

H . 2 .

1

Coupled Vehicle Equilibrium Equation s

This section lists the seven coupled equilibrium equations for

the half-carbody model assuming no wheelset misalignments. The following

notation is used:

+ =

+ Front Truck

- Rear Truck

Subscript

a =

1 Truck Reference

0 Ground Reference

1 Lead Wheelset of Truck

2 Trailing Wheelset of Truck

H-15
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H . 3 Numerical Methods

The vehicle steady-state curving model is used to determine the displaced

steady-state geometry and wheel /rail forces of a vehicle on a constant radius

curve. The steady-state curving analysis assumes that the vehicle is

dynamically stable.

H . 3 . 1 Carbody Roll Calculation

Carbody roll is a decoupled degree of freedom. It can be

calculated by considering a static moment equilibrium in the roll direction

of the carbody about the secondary connection point. The calculation accounts

for the following influences: (1) carbody cant deficiency forces; (2) lateral

buff forces; and (3) the inverted pendulum effect of carbody weight.

Figure H. 9 shows the forces acting on the secondary of a truck. Expressions

can be derived for: (1) the external roll moment about the secondary

connection point(s) due to cant deficiency forces, W i , , and buff, F,
c d ’ buff

and (2) the restoring moment due to the secondary vertical stiffness, k
gz

,

and the inverted pendulum effect. Equating these moment expressions yields

the relation for the carbody roll:

W

6
c

f *d
h
cs

2k d
2

sz s

F
buff

h
b

W
c. h

cs

where h. = h- h -h -r
b c ts tp o

(H-17)

H . 3 . 2 Vertical Wheel Load Calculation

The net vertical loads acting on the left and right wheels,

V and V
, respectively, are needed to solve the wheelset equilibrium

L R

equations. These vertical wheel loads are computed by considering the static
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plane

Figure H. 9 Forces Acting at Secondary Suspension

of a Truck

Rear

rail
plane

Figure K . 10 Wheelset Free-Body Diagram, Rear View
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equilibrium of each wheelset in the roll direction. Figure H.10 shows the

rear view of a wheelset free-body diagram. Expressions for the vertical

wheel loads are:

V
T = v + AV (H-18)
L avg

>ni> - AV (H-19)
K avg

where the average vertical wheel load, V , is due to wheelset, truck, and
avg ’

carbody weight:
W W W

V = + —— + — (H-20)
avg 248

and the vertical load shift, AV, arises from wheelset suspension force and

moment loading. Summing moments about point 0 in Figure H.ll yields an

expression for AV:

AV =
2a

[M + r (F + W <j> ,.) ]susp o susp w d
(H-21)

The suspension force acting on each wheelset, F is due to primary
susp r y

lateral stiffness, k and to any interaxle shear stiffness, k Assuming
py s2

no initial wheelset misalignments, it is given by

F = 2k (y + bip - y _

)

susp py ' t t wl

+ k
\ y 9 - y + b(ii + ip ) + 6

s2 i w2 wl wl w2 Fs

for the leading wheelset, and by

(H-22)

F = 2 k (y + b^ - y 0 )
susp py

y
t t

J w2

- k
\ y - y ,

+ b (ip + ip ) + 6
s2 1 w2 wl wl w2 Fs

(H-2 3)

for the trailing wheelset, where 6^ represents the additional suspension

stroke imposed by forced steering.

The suspension moment, ^
sug p

is obtained by performing a static moment

balance about the wheelset center of gravity. From Figure H.ll,
W

M = —t^> (h + h + li )
susp 4 d cs ts tp
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H.3.3 Solution Method for Vehicle Equations

(H-24)

The vehicle equilibrium equations represent a set of simultaneous

nonlinear algebraic equations. These equations are solved numerically by means

of an iterative algorithm entitled SROOTS [32]. The major features

of the method are: (1) the iterations do not include any searches along lines

in the space of the variable so most situations require only one evaluation

of the set of algebraic equations, and (2) the correction vector, 6, inter-

polates between the classical Newton-Raphson and the steepest descent correc-

tions in a way that generally gives fast convergence. These two features

make the algorithm computationally fast. A schematic of an iteration in

SROOTS is shown in Figure H.12.

The standard form of the equations to be solved is:

F
i

= 0, i = 1, 2, ,N (H-25)

where N is the total number of equations. The method requires the following

information

:

(1) an initial estimate or guess of the solution vector

(2) a step length, DSTEP, to approximate the first derivatives of the

functions , i . e .

,

f
]

_(X
1
+ DSTEP, X

2
, X

3
, ,X

N
)

DSTEP

- f, (xr V (H-26)
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Figure H.12 Schematic of One Iteration in SROOTS,

from Rabinowitz, [32]
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(3) A generous estimate of the distance between the initial guess and

the final solution where the distance, DMAX, is

^ 2 1/2
DMAX = d (X, Y) = Z [(X - Y.)

] (H-27)
i=l

1

(A) The required accuracy of the solution, ACC, with iterations

N
2

stopping when Z [ f . (X)

]

= ACC
i=l

1 “

(5) The maximum number of allowable iterations, MAX.

When SROOTS cannot find a solution of the equations consistent with the value

of ACC, it reports one of the following errors:

(1) The number of iterations exceeds MAX.

(2) A stationary point is predicted since no solutions exist within

distance DMAX of X.

(3) N + 4 calls of the residual function fail to improve X indicating

that DSTEP may be too large, or that rounding errors prevent the

desired accuracy from being obtained.

(4) A completely new evaluation of the partial derivatives (Jacobian)

does not decrease F. This may occur for reasons indicated in (3).

SROOTS is incorporated into the steady-state curving program as shown

in Figure 2.11. The main program reads the vehicle and curving input data,

calls SROOTS which solves the equilibrium state equations, and appropriately

formats the output. SROOTS calls CALFUN N times to set up the system

Jacobian matrix (matrix of partial derivatives) . In each iteration it calls

MINV to invert the system matrix. CALFUN sets up the vehicle equations each

time it is called. It does this by calling KMAT for the stiffness matrix

and by calling WHLST1 or WHLST2 once for each wheelset to obtain the wheel

H-30



forces depending whether or not two-point contact occurs at the flanging

wheel. Both WHLST1 and WHLST2 call C-EOM, COEFF, and CFORCE. GEOM obtains

the wheel/rail geometry from the profile data table. Creep forces for each

wheel are computed in CFORCE using the Kalker creep coefficients obtained

from COEFF. COEFF and CFORCE are called iteratively by the wheelset routines

(WHLST1, WHLST2) until the net torque on each wheelset is equal to the input

value of drive/brake torque, and until wheelset roll equilibrium is

satisfied

.

Inputs

Wheel/Rail profile geometry data

Vehicle system inputs such as geometry, weights

Forcing Inputs

:

D degree curve

<f>, cant deficiency
d

Buff lateral component of buff force, per truck

wheelset drive torque (same for all wheelsets)

F lateral force or carbody at secondary suspension connection point
sec

carbody yaw displacement

Outputs

The primary output of the steady-state curving program is the vector

of static vehicle displacements which satisfies the nonlinear vehicle

equations. From this solution vector, the following outputs are obtained.

• Lateral excursion of wheelsets with respect to the track

centerline, yw i

• Wheelset angles of attack, 0 .

wi

• Net axle forces and L/V ratios
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• Yaw moment on each axle

• Wheel/Rail forces (creep and normal)

• Suspension strokes

• Work done at wheel/rail contact patches

• Equilibrium check

In summary, the nonlinear algebraic equilibrium equations representing

steady-state curving are solved by subroutine SROOTS, which has proved to be

a very robust equation solver.
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APPENDIX I

PARAMETRIC CURVING DATA

In this Appendix, the results of the nonlinear steady-steady curving

analysis are tabulated for a conventional, self-steered radial, and two forced-

steered radial truck designs with new and Heumann wheels. The curving

behavior of each truck with four suspension stiffnesses (from soft to stiff,

including baseline) negotiating 2. 5°, 5°, 10°, and 20° curves is reported in

terms of the following curving performance indices: (1) leading axle angle of

attack, (2) lateral wheel/rail force at flanging wheel, (3) contact patch

work at flanging wheel, and (4) total contact patch work (i.e., the sum of

the contact patch work at the four wheels of the truck)

.
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Table 1.1 Curving Analysis Results for Conventional Track with Standard AAR
Profile Wheels

CONVENTIONAL TRUCK WITH NEW WHEELS

Degree Curve

2.5° 5° 10° 20°

k =
px

8.5 x 10
4

lb/ft

^(°) -0.029 0.056 0.273 0.709

F
Y1L (lb) 800. 2300. 4910. 5430.

W (ft-lb/ft' 1 30. 86. 139.

W
T

(ft-lb/ft)
2 . 33. 134. 247.

1.35 x 10
5

lb/ft

(Baseline)

*1 -0.023 0.080 0.289 0.750

f
yil 820. 2700. 5195. 6870.

W7

1L 1 . 39. 90. 149.

W
T 2. 44. 118. 250.

5.0 x 10
D

lb / ft

h 0.080 0.237 0 .600 1.173

f
yil 2090. 4325. 6140. 69 70.

W
1L 33. 80. 130. 206.

W
T 37. 99. 195. 376.

£

1.0 x 10

lb /ft

h 0.134 0.322 0.742 1.182

n
" Y1L

2680. 4785. 6250. 6955.

W„
1L 49. 94. 147. 207.

WJ
T 56. 121. 228. 385.

;j; = Leading Axle Angle of A.ttack (positive counterclockwise)

F = Lateral Wheel/Rail Force at Flanging Wheel (positive acting in)

W„, = Work at Flanging Wheel
iL

W^ = Total Work (Sum of W7ork at Four Wheels)



Table 1.2 Curving Analysis Results for Conventional Truck with Heumann Profile
Wheels

Degree Curve

2.5° 5° 10° 20°

k =
px

2.70 x 10
3

lb /ft

(°)
-0.010 -0.037 0.251 1.037

f
yil

(lb> 1580. 1700. 3310. 6120.

w
1L

(ft-lb/ft) 3. 7. 35. 119.

W
T

(ft-lb/ft) 8. 17. 68. 275 .

4.25 x 10
5

lb/ft

0.010 0.118 0.436 1.115

f
yil 1520. 1855. 4320. 6170.

^1L 5. 18. 55. 128.

W
T

12. 33. 111. 297.

6.50 x 10
3

lb/ft

(Baseline)

h 0.055 0.198 0.563 1.151

f
yil 1470. 2290. 4790. 6180.

W
1L

11. 29. 69. 131.

W
T 20. 50. 143. 314.

6
1.0 x 10

lb/ft

^1 0.097 0.261 0 . 660— 1.170

F
Y1L 1450. 2680. 5170. 6170.

W,
1L 16. 37. 80. 133.

WmT 27. 63. 184. 324.

= Leading Axle Angle of Attack

F^ = Lateral Wheel/Rail Force at Flanging Wheel

WlL
= at flanging Wheel

W = Total Work (Sum of Work at Four Wheels)
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Table 1.3 Curving Analysis Results for Self-Steered Radial Truck with Standard

AAR Profile Wheels

= 1.0 x 10^ ft-lb/rad, k 0 - 1.0 x 10 lb/ft)
2

Degree Curve

2.5° 5° 10° 20°

k =
px

4
7.0 x 10

lb/ft

^ (°) -0.011 -0.014 0.044 0.234

f
yil

(lb) 660. 1650. 4060. 6280.

W (ft-lb/ft
L

1 . 10. 50. 90.

w
T

(ft-lb/ft) 2. 14. 76. 166.

1.20 x 10
5

lb/ft

(Baseline;

h -0.002 0 .024 0.141 0.632

f
yil

715. 2260. 4960. 7090.

W
1L

2. 24. 72. 138.

W
T

3. 29. 103. 254.

5.0 x 10
5

lb/ft

*1 0.083 0.231 0.598 1.042

f
yil 2090. 4420. 6360. 7160.

W
1L 34. 81. 134. 194.

W
T 38. 101. 205. 370.

6
1.0 x 10

lb/ft

h 0.132 0.319 0.721 1.109

F
Y1L 2700. 4910. 6570. 7140.

W
1L 49. 96. 151. 203.

W
T 57. 125. 242. 390.

F

1

Y1L

Leading Axle Angle of Attack

Lateral Wheel/Rail Force at Flanging Wheel

Work at Flanging ’['/heel

Total Work (Sum of Work at Four Wheels)
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Table 1.4 Curving Analysis Results for Self-Steered Radial Truck with Heumann

Wheels

3 6
(k
^2

= 1*0 x 10 ft-lb/rad, k
g2

= 1.0 x 10 lb/ft)

Degree Curve

2.5° 5° 10° 20°

k =

px

2.45 x 10

lb/ft

^ (°) 0.035 0.163 0.249 0.827

f
yil

(lb)
1240. 1520. 3160. 6190.

W (ft-lb/ft)
6. 21. 34. 101.

W
T

(ft-lb/ft)
13. 38. 62. 256.

3.70 x 10
5

Ib/ft

*1 0.089 0.193 0.364 0.962

f
yil 1110. 1750. 4140. 6270.

w
il 13. 25. 49. 115

W
T 30. 44. 99. 291.

5.0 x 10
D

lb/ft

(Baseline)

^1 0.104 0.215 0 .468 1.024

f
yil 1140. 1970. 4645. 6290.

W
1L 15. 29. 61. 122.

W
T̂ 34. 48. 127. 308.

6
1.0 x 10

lb /ft

h 0.123 0.269 0.634 1.109

f
yil 1170. 2580. 5310. 6310.

w,
1L 17. 37. 80. 131.

w^
T 38. 62. 190. 329.

W

W„

Y1L

1L

Leading Axle Angle of Attack

Lateral Wheel/Rail Force at Flanging Wheel

Work at Flanging Wheel

Total Work (Sum of Work at Four Wheels)
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Table 1.5 Curving Analysis Results for Forced-Steered Radial Truck, FSR I, with
Standard AAR Profile Wheels

(k = 7.0 x 10
4

lb/ft, k = 1.0 x 10
6

lb/ft)
px s2

Degree Curve

2.5° 5° 10° 20°

^2
1.68 x 10

f t-lb/ rad

( Baseline)

O
I
—

1

-0.010 -0.009 0.054 0.241

F
Y1L (lb) 660. 1725. 4160. 6310

w (ft-ib/ft: 1 . 12. 52. 91.

W
T

(ft- lb /ft) 2. 16. 79. 167.

5.0 x 10
5

f t-lb/rad

h -0.007 -0.001 0.070 0.251

f
yil 670. 1840. 4310. 6360.

w,
1L 1 . 15. 56. 92.

W
T 2. 18. 83. 169.

1.0 x 10
6

f t-lb / rad

h -0.004 0.007 0.084 0.261

WlL 6 70. 1960. 4440. 6395.

W
1L 1 . 18. 60. 93.

W
T 2

.

22. 87. 171.

1.0 x 10
7

f t-lb / rad

Vi 0.016 0.035 0.124 0.281

f
yil

975. 2370. 4760. 6475.

W
1L

8. 27. 68. 96.

w^
T

10. 32. 98. 175.

^ = Leading Axle Angle of Attack

F = Lateral Wheel/Rail Force at Flanging Wheel
I 1JL

Wil = Work at Flanging Wheel

W^ = Total Work (Sum of Work at Four Wheels)
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Table 1.6 Curving Analysis Results for Forced-Steered Radial Truck, FSR II, wi

Standard AAR Profile

3 6

(k = 1.0 X 10° lb/ft, k = 1.0 x 10 lb/ft)
px

Degree Curve

2.5° 5° 10° 20°

^b2

1.0 x 10
5

f t-lb/rad

^ (°) -0.021 -0.041 -0.096 -0.074

f
yil

(lb)
650. 1190. 2430. 4140.

W
1L

(ft-lb/ft) 0 . 1 . 13. 55.

W
T

(ft-lb/ft) 1 . 4 . 35. 137.

2.0 x 10
5

f t-lb/rad

h -0.020 -0.040 -0.094 -0.040

f
yil 650. 1200. 2510. 4290.

w
il 0 . 1 . 14. 59.

W
T 1 . 4. 37. 138.

4.1 x 10
5

f t-lb/rad

(Baseline)

h -0.018 -0.038 -0.064 0.006

F
Y1L 650. 1210. 2810. 4555.

W
1L 0 . 1 . 19. 64.

W
T 1 . 4. 45. 139 .

1.0 x 10
6

f t-lb/rad

h -0.013 -0.034 -0.015 0.076

f
yil 650. 1250. 3330. 50 70.

1 . 1 . 33. 72.

W
T 1 . 4. 59. 145.

ip^ = Leading Axle Angle of Attack

F = Lateral Wheel/Rail Force at Flanging Wheel
Y 1L

W = Work at Flanging Wheel
-L Li

W = Total Work (Sum of Work at Four Wheels)
T T _ 7



Table 1.7 Curving Analysis Results for Forced-Steered Radial Truck, FSR I, with

Heumann Profile Wheels

(k = 7.0 x 10
4

lb/ft, k = 1.0 x 10 lb/ft)
px sZ

Degree Curve

2.5° 5° O
OrH 20°

^2

5.0 x 10
5

f t-lb/rad

^ (°) -0.009 0.004 0.070 0.100

F
Y1L (lb) 1530. 1490. 1730. 3390.

W
1L (ft- lb /ft 1. 2 8 19 .

W
T

(ft-lb/ft) 4. 5 13 41.

1.66 x 10

f t-lb / rad

(Baseline)

h -0.002 0.010 0.068 0.114

f
yil 1470. 1450. 1730. 3470.

W
1L 1 . 2. 7 18.

k
t

4. 6. 12. 44.

5.0 x 10
6

f t-lb/rad

h 0.004 0.013 0.062 0.125

f
yil 1420. 1430. 1720. 3550.

W
1L 2. 3. 6. 17.

W
T 5 . 6. 11. 47.

1.0 x 10
7

f t-lb/rad

h 0.006 0.014 0.060 0.129

F
Y1L 1400. 1430. 1720. 3575.

W
1L 2. 3. 6. 17.

W
T 5. 6. 11. 48.

= Leading Axle Angle of Attack

F = Lateral Wheel/Rail Force at Flanging Wheel
X -Li_i

U = Work at Flanging Wheel

W = Total Work (Sum of Work at Four Wheels)
T
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Table 1.8 Curving Analysis Results for Forced-Steered Radial Truck, FSR II, with
Heumann Profile Wheels

A
6

(k = 1.0 x 10
J

lb/ft, k 0 = 1.0 x 10 lb/ft)
v px s2

Degree Curve

2.5° 5°
t-

1

o
o 20°

^2
6

1.0 x 10

f t-lb/rad

^ (°) -0.019 -0.026 -0.004 -0.003

F
Y1L (lb) 1645. 1780. 1800. 2980.

w
il (ft-ib/ft: 1. 2 2 11.

W
T (f t-lb /ft) 5. 6 6 30.

6
2.0 x 10

f t-lb /rad

(Baseline)

h -0.011 -0.015 0.010 0.024

f
yil 1560. 1660. 1750. 2970.

W
1L 1. 2. 2. 16.

w^
T 4. 5. 6. 31.

5.0 x 10
6

f t-lb/rad

illJ
1 -0.002 -0.004 0.024 0.056

f
yil 1470. 1560. 1710. 3040.

W
1L 1. 1 2. 17.

W
T 4. 5. 6 33

1.0 x 10

f t-lb/rad

A 0.001 0.002 0.030 0.074

F
Y1L 1440. 1510. 1700. 3120.

W
1L 1. 1. 2. 17.

WmT 4. 5. 7. 36.

ip = Leading Axle Angle of Attack

F = Lateral FJheel/Rail Force at Flanging Wheel
Y 1L

W = Work at Flanging Wheel
-L

1

j

W = Total Work (Sum of Work at Four Wheels)
T
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APPENDIX J

REPORT OF NEW TECHNOLOGY

In this report, the speed capability and curving performance

of rail vehicles employing conventional and advanced truck designs

are parametrically investigated using analytical and computational

tools. The studies are based upon a generalized rail vehicle model

which can represent conventional, self-steered, and forced-steered

trucks. The curving analysis includes nonlinear wheel/rail profile

geometry, wheel/rail friction force saturation, and nonlinear

suspension components. A major contribution of the analysis is that

it accounts for two-point wheel/rail contact, which occurs with many

common wheel profiles during flanging.

The material presented in this report has been thoroughly

reviewed and does not contain patentable or copyrightable material.

The innovations reported in this document are described in Chapter 2

and are developed in detail in Appendices A through H.
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